\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays

Abstract Related Papers Cited by
  • In this paper we strengthen some results on the existence and properties of pullback attractors for a 2D Navier-Stokes model with finite delay formulated in [Caraballo and Real, J. Differential Equations 205 (2004), 271--297]. Actually, we prove that under suitable assumptions, pullback attractors not only of fixed bounded sets but also of a set of tempered universes do exist. Moreover, thanks to regularity results, the attraction from different phase spaces also happens in $C([-h,0];V)$. Finally, from comparison results of attractors, and under an additional hypothesis, we establish that all these families of attractors are in fact the same object.
    Mathematics Subject Classification: Primary: 35B41, 35Q30, 37L30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.doi: 10.1016/j.na.2005.03.111.

    [2]

    T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains, C. R. Math. Acad. Sci. Paris, 342 (2006), 263-268.doi: 10.1016/j.crma.2005.12.015.

    [3]

    T. Caraballo and J. Real, Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441-2453.doi: 10.1098/rspa.2001.0807.

    [4]

    T. Caraballo and J. Real, Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181-3194.doi: 10.1098/rspa.2003.1166.

    [5]

    T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.doi: 10.1016/j.jde.2004.04.012.

    [6]

    L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Sem. Mat. Univ. Padova, 31 (1961), 308-340.

    [7]

    J. García-Luengo, P. Marín-Rubio and J. Real, $H^2$-boundedness of the pullback attractors for non-autonomous 2D Navier-Stokes equations in bounded domains, Nonlinear Anal., 74 (2011), 4882-4887.doi: 10.1016/j.na.2011.04.063.

    [8]

    J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors in $V$ for non-autonomous 2D-Navier-Stokes equations and their tempered behaviour, J. Differential Equations, 252 (2012), 4333-4356.doi: 10.1016/j.jde.2012.01.010.

    [9]

    J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors for 2D Navier-Stokes equations with delays and their regularity, Adv. Nonlinear Stud., 13 (2013), 331-357.

    [10]

    M. J. Garrido-Atienza and P. Marín-Rubio, Navier-Stokes equations with delays on unbounded domains, Nonlinear Anal., 64 (2006), 1100-1118.doi: 10.1016/j.na.2005.05.057.

    [11]

    S. M. Guzzo and G. Planas, On a class of three dimensional Navier-Stokes equations with bounded delay, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 225-238.doi: 10.3934/dcdsb.2011.16.225.

    [12]

    J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, 1969.

    [13]

    A. Z. Manitius, Feedback controllers for a wind tunnel model involving a delay: analytical design and numerical simulation, IEEE Trans. Automat. Control, 29 (1984), 1058-1068.doi: 10.1109/TAC.1984.1103436.

    [14]

    P. Marín-Rubio, A. M. Márquez-Durán and J. Real, Three dimensional system of globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 655-673.doi: 10.3934/dcdsb.2010.14.655.

    [15]

    P. Marín-Rubio, A. M. Márquez-Durán and J. Real, On the convergence of solutions of globally modified Navier-Stokes equations with delays to solutions of Navier-Stokes equations with delays, Adv. Nonlinear Stud., 11 (2011), 917-927.

    [16]

    P. Marín-Rubio, A. M. Márquez-Durán and J. Real, Pullback attractors for globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst., 31 (2011), 779-796.doi: 10.3934/dcds.2011.31.779.

    [17]

    P. Marín-Rubio and J. Real, Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains, Nonlinear Anal., 67 (2007), 2784-2799.doi: 10.1016/j.na.2006.09.035.

    [18]

    P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems, Nonlinear Anal., 71 (2009), 3956-3963.doi: 10.1016/j.na.2009.02.065.

    [19]

    P. Marín-Rubio and J. Real, Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators, Discrete Contin. Dyn. Syst., 26 (2010), 989-1006.doi: 10.3934/dcds.2010.26.989.

    [20]

    P. Marín-Rubio, J. Real and J. Valero, Pullback attractors for a two-dimensional Navier-Stokes model in an infinite delay case, Nonlinear Anal., 74 (2011), 2012-2030.doi: 10.1016/j.na.2010.11.008.

    [21]

    G. Planas and E. Hernández, Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations, Discrete Contin. Dyn. Syst., 21 (2008), 1245-1258.doi: 10.3934/dcds.2008.21.1245.

    [22]

    J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge University Press, 2001.doi: 10.1007/978-94-010-0732-0.

    [23]

    R. Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domains, Nonlinear Anal., 32 (1998), 71-85.doi: 10.1016/S0362-546X(97)00453-7.

    [24]

    R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988.doi: 10.1007/978-1-4684-0313-8.

    [25]

    R. Temam, Navier-Stokes equations, Theory and Numerical Analysis, 2nd. ed., North Holland, Amsterdam, 1979.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(89) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return