We study the local and global wellposedness of the initial-boundary value problem for the biharmonic Schrödinger equation on the half-line with inhomogeneous Dirichlet-Neumann boundary data. First, we obtain a representation formula for the solution of the linear nonhomogenenous problem by using the Fokas method (also known as the
Citation: |
[1] |
B. Aksas and S.-E. Rebiai, Uniform stabilization of the fourth order Schrödinger equation, J. Math. Anal. Appl., 446 (2017), 1794-1813.
doi: 10.1016/j.jmaa.2016.09.065.![]() ![]() ![]() |
[2] |
K. Aoki, N. Hayashi and P. I. Naumkin, Global existence of small solutions for the fourth-order nonlinear Schrödinger equation, NoDEA Nonlinear Differential Equations Appl., 23 (2016), Art. 65, 18.
doi: 10.1007/s00030-016-0420-z.![]() ![]() ![]() |
[3] |
C. Audiard, Global Strichartz estimates for the Schrödinger equation with nonzero boundary conditions and applications, Ann. Inst. Fourier.
![]() |
[4] |
G. Baruch and G. Fibich, Singular solutions of the $L^2$-supercritical biharmonic nonlinear Schrödinger equation, Nonlinearity, 24 (2011), 1843-1859.
doi: 10.1088/0951-7715/24/6/009.![]() ![]() ![]() |
[5] |
A. Batal and T. Özsarı, Nonlinear Schrödinger equations on the half-line with nonlinear boundary conditions, Electron. J. Differential Equations, Paper No. 222, 20.
![]() ![]() |
[6] |
M. Ben-Artzi, H. Koch and J.-C. Saut, Dispersion estimates for fourth order Schrödinger equations, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 87-92.
doi: 10.1016/S0764-4442(00)00120-8.![]() ![]() ![]() |
[7] |
J. L. Bona, S.-M. Sun and B.-Y. Zhang, Nonhomogeneous boundary-value problems for onedimensional nonlinear Schrödinger equations, J. Math. Pures Appl. (9), 109 (2018), 1–66.
doi: 10.1016/j.matpur.2017.11.001.![]() ![]() ![]() |
[8] |
T. Boulenger and E. Lenzmann, Blowup for biharmonic NLS, Ann. Sci. Éc. Norm. Supér.
(4), 50 (2017), 503–544.
doi: 10.24033/asens.2326.![]() ![]() ![]() |
[9] |
Q. Bu, On well-posedness of the forced nonlinear Schrödinger equation, Appl. Anal., 46 (1992), 219-239.
doi: 10.1080/00036819208840122.![]() ![]() ![]() |
[10] |
R. Carroll and Q. Bu, Solution of the forced nonlinear Schrödinger (NLS) equation using PDE techniques, Appl. Anal., 41 (1991), 33-51.
doi: 10.1080/00036819108840015.![]() ![]() ![]() |
[11] |
S. Cui and C. Guo, Well-posedness of higher-order nonlinear Schrödinger equations in Sobolev spaces $H^s(\Bbb R^n)$ and applications, Nonlinear Anal., 67 (2007), 687-707.
doi: 10.1016/j.na.2006.06.020.![]() ![]() ![]() |
[12] |
M. Dimakos and A. S. Fokas, The Poisson and the biharmonic equations in the interior of a convex polygon, Stud. Appl. Math., 134 (2015), 456-498.
doi: 10.1111/sapm.12078.![]() ![]() ![]() |
[13] |
V. D. Dinh, On the focusing mass-critical nonlinear fourth-order Schrödinger equation below the energy space, Dyn. Partial Differ. Equ., 14 (2017), 295-320.
doi: 10.4310/DPDE.2017.v14.n3.a4.![]() ![]() ![]() |
[14] |
V. D. Dinh, On well-posedness, regularity and ill-posedness for the nonlinear fourth-order Schrödinger equation, Bull. Belg. Math. Soc. Simon Stevin, 25 (2018), 415-437.
![]() ![]() |
[15] |
V. D. Dinh, Well-posedness of nolinear fractional Schrödinger and wave equations in sobolev spaces, Int. J. Appl. Math., 31 (2018), 483-525.
![]() |
[16] |
G. Fibich, B. Ilan and G. Papanicolaou, Self-focusing with fourth-order dispersion, SIAM J. Appl. Math., 62 (2002), 1437-1462.
doi: 10.1137/S0036139901387241.![]() ![]() ![]() |
[17] |
A. S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London Ser. A, 453 (1997), 1411-1443.
doi: 10.1098/rspa.1997.0077.![]() ![]() ![]() |
[18] |
A. S. Fokas, A Unified Approach to Boundary Value Problems, vol. 78 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008.
doi: 10.1137/1.9780898717068.![]() ![]() ![]() |
[19] |
A. S. Fokas, A. A. Himonas and D. Mantzavinos, The Korteweg–de Vries equation on the half-line, Nonlinearity, 29 (2016), 489-527.
doi: 10.1088/0951-7715/29/2/489.![]() ![]() ![]() |
[20] |
A. S. Fokas, A. A. Himonas and D. Mantzavinos, The nonlinear Schrödinger equation on the half-line, Trans. Amer. Math. Soc., 369 (2017), 681-709.
doi: 10.1090/tran/6734.![]() ![]() ![]() |
[21] |
C. Guo, Global existence of solutions for a fourth-order nonlinear Schrödinger equation in $n+1$ dimensions, Nonlinear Anal., 73 (2010), 555-563.
doi: 10.1016/j.na.2010.03.052.![]() ![]() ![]() |
[22] |
C. Guo, Global existence and asymptotic behavior of the Cauchy problem for fourth-order Schrödinger equations with combined power-type nonlinearities, J. Math. Anal. Appl., 392 (2012), 111-122.
doi: 10.1016/j.jmaa.2012.03.028.![]() ![]() ![]() |
[23] |
C. Hao, L. Hsiao and B. Wang, Wellposedness for the fourth order nonlinear Schrödinger equations, J. Math. Anal. Appl., 320 (2006), 246-265.
doi: 10.1016/j.jmaa.2005.06.091.![]() ![]() ![]() |
[24] |
C. Hao, L. Hsiao and B. Wang, Well-posedness of Cauchy problem for the fourth order nonlinear Schrödinger equations in multi-dimensional spaces, J. Math. Anal. Appl., 328 (2007), 58-83.
doi: 10.1016/j.jmaa.2006.05.031.![]() ![]() ![]() |
[25] |
N. Hayashi and P. I. Naumkin, Factorization technique for the fourth-order nonlinear Schrödinger equation, Z. Angew. Math. Phys., 66 (2015), 2343-2377.
doi: 10.1007/s00033-015-0524-z.![]() ![]() ![]() |
[26] |
N. Hayashi and P. I. Naumkin, Global existence and asymptotic behavior of solutions to the fourth-order nonlinear Schrödinger equation in the critical case, Nonlinear Anal., 116 (2015), 112-131.
doi: 10.1016/j.na.2014.12.024.![]() ![]() ![]() |
[27] |
N. Hayashi and P. I. Naumkin, Large time asymptotics for the fourth-order nonlinear Schrödinger equation, J. Differential Equations, 258 (2015), 880-905.
doi: 10.1016/j.jde.2014.10.007.![]() ![]() ![]() |
[28] |
N. Hayashi and P. I. Naumkin, On the inhomogeneous fourth-order nonlinear Schrödinger equation, J. Math. Phys., 56 (2015), 093502, 25.
doi: 10.1063/1.4929657.![]() ![]() ![]() |
[29] |
A. A. Himonas and D. Mantzavinos, The "good" Boussinesq equation on the half-line, J. Differential Equations, 258 (2015), 3107-3160.
doi: 10.1016/j.jde.2015.01.005.![]() ![]() ![]() |
[30] |
A. A. Himonas and D. Mantzavinos, Well-posedness of the nonlinear Schrödinger equation on the half-plane, arXiv: 1810.02395.
![]() |
[31] |
A. A. Himonas, D. Mantzavinos and F. Yan, Well-posedness of initial-boundary value problems for a reaction-diffusion equation, arXiv: 1810.05322.
![]() |
[32] |
J. Holmer, The initial-boundary-value problem for the 1D nonlinear Schrödinger equation on the half-line, Differential Integral Equations, 18 (2005), 647-668.
![]() ![]() |
[33] |
V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrodinger-type equations, Phys. Rev. E, 53 (1996), R1336–R1339.
doi: 10.1016/0375-9601(95)00752-0.![]() ![]() ![]() |
[34] |
V. I. Karpman and A. G. Shagalov, Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion, Phys. D, 144 (2000), 194-210.
doi: 10.1016/S0167-2789(00)00078-6.![]() ![]() ![]() |
[35] |
F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, 2nd edition
doi: 10.1007/978-1-4939-2181-2.![]() ![]() ![]() |
[36] |
C. Miao, H. Wu and J. Zhang, Scattering theory below energy for the cubic fourth-order Schrödinger equation, Math. Nachr., 288 (2015), 798-823.
doi: 10.1002/mana.201400012.![]() ![]() ![]() |
[37] |
C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the focusing energy-critical nonlinear Schrödinger equations of fourth order in the radial case, J. Differential Equations, 246 (2009), 3715-3749.
doi: 10.1016/j.jde.2008.11.011.![]() ![]() ![]() |
[38] |
B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, Dyn. Partial Differ. Equ., 4 (2007), 197-225.
doi: 10.4310/DPDE.2007.v4.n3.a1.![]() ![]() ![]() |
[39] |
B. Pausader, Scattering and the Levandosky-Strauss conjecture for fourth-order nonlinear wave equations, J. Differential Equations, 241 (2007), 237-278.
doi: 10.1016/j.jde.2007.06.001.![]() ![]() ![]() |
[40] |
B. Pausader, The cubic fourth-order Schrödinger equation, J. Funct. Anal., 256 (2009), 2473-2517.
doi: 10.1016/j.jfa.2008.11.009.![]() ![]() ![]() |
[41] |
B. Pausader and S. Shao, The mass-critical fourth-order Schrödinger equation in high dimensions, J. Hyperbolic Differ. Equ., 7 (2010), 651-705.
doi: 10.1142/S0219891610002256.![]() ![]() ![]() |
[42] |
B. Pausader and S. Xia, Scattering theory for the fourth-order Schrödinger equation in low dimensions, Nonlinearity, 26 (2013), 2175-2191.
doi: 10.1088/0951-7715/26/8/2175.![]() ![]() ![]() |
[43] |
M. Ruzhansky, B. Wang and H. Zhang, Global well-posedness and scattering for the fourth
order nonlinear Schrödinger equations with small data in modulation and Sobolev spaces, J.
Math. Pures Appl. (9), 105 (2016), 31–65.
doi: 10.1016/j.matpur.2015.09.005.![]() ![]() ![]() |
[44] |
J.-i. Segata, Remark on well-posedness for the fourth order nonlinear Schrödinger type equation, Proc. Amer. Math. Soc., 132 (2004), 3559-3568.
doi: 10.1090/S0002-9939-04-07620-8.![]() ![]() ![]() |
[45] |
J.-i. Segata, Modified wave operators for the fourth-order non-linear Schrödinger-type equation with cubic non-linearity, Math. Methods Appl. Sci., 29 (2006), 1785-1800.
doi: 10.1002/mma.751.![]() ![]() ![]() |
[46] |
J.-i. Segata and A. Shimomura, Asymptotics of solutions to the fourth order Schrödinger type equation with a dissipative nonlinearity, J. Math. Kyoto Univ., 46 (2006), 439-456.
doi: 10.1215/kjm/1250281786.![]() ![]() ![]() |
[47] |
Y. Wang, Nonlinear fourth-order Schrödinger equations with radial data, Nonlinear Anal., 75 (2012), 2534-2541.
doi: 10.1016/j.na.2011.10.047.![]() ![]() ![]() |
[48] |
R. Wen and S. Chai, Well-posedness and exact controllability of a fourth order Schrödinger equation with variable coefficients and Neumann boundary control and collocated observation, Electron. J. Differential Equations, Paper No. 216, 17.
![]() ![]() |
[49] |
R. Wen, S. Chai and B.-Z. Guo, Well-posedness and exact controllability of fourth order Schrödinger equation with boundary control and collocated observation, SIAM J. Control Optim., 52 (2014), 365-396.
doi: 10.1137/120902744.![]() ![]() ![]() |
[50] |
R. Wen, S. Chai and B.-Z. Guo, Well-posedness and exact controllability of fourth-order Schrödinger equation with hinged boundary control and collocated observation, Math. Control Signals Systems, 28 (2016), Art. 22, 28.
doi: 10.1007/s00498-016-0175-4.![]() ![]() ![]() |
[51] |
J. Zhang and J. Zheng, Energy critical fourth-order Schrödinger equations with subcritical perturbations, Nonlinear Anal., 73 (2010), 1004-1014.
doi: 10.1016/j.na.2010.04.027.![]() ![]() ![]() |
[52] |
J. Zheng, Well-posedness for the fourth-order Schrödinger equations with quadratic nonlinearity, Adv. Differential Equations, 16 (2011), 467-486.
![]() ![]() |
[53] |
S. Zhu, H. Yang and J. Zhang, Blow-up of rough solutions to the fourth-order nonlinear Schrödinger equation, Nonlinear Anal., 74 (2011), 6186-6201.
doi: 10.1016/j.na.2011.05.096.![]() ![]() ![]() |
[54] |
S. Zhu, J. Zhang and H. Yang, Limiting profile of the blow-up solutions for the fourth-order nonlinear Schrödinger equation, Dyn. Partial Differ. Equ., 7 (2010), 187-205.
doi: 10.4310/DPDE.2010.v7.n2.a4.![]() ![]() ![]() |
[55] |
S. Zhu, J. Zhang and H. Yang, Biharmonic nonlinear Schrödinger equation and the profile decomposition, Nonlinear Anal., 74 (2011), 6244-6255.
doi: 10.1016/j.na.2011.06.004.![]() ![]() ![]() |
The region
Partitioning the boundary