\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The asymptotic behavior of solutions of a semilinear parabolic equation

Abstract Related Papers Cited by
  • We study the long-time behavior of solutions of the Cauchy problem

    $u_t=\Delta u - (u^q)_y- u^p, \quad p, q >1,$

    defined in the domain $Q=\{ (x, t): x=(x, y) \in \mathbf{R}^{N-1} \times \mathbf{R}, t >0 \}$ with nonnegative initial data in $L^1( \mathbf{R}^N)$. We completely classify the asymptotic profiles of solutions as $t \to \infty$ according to the parameters $p$ and $q$. We use rescaling transformations and a priori estimates.

    Mathematics Subject Classification: 35B30, 35B40, 35K15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views(54) PDF downloads(107) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return