\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Generating functions for stochastic symplectic methods

Abstract Related Papers Cited by
  • Symplectic integration of stochastic Hamiltonian systems is a developing branch of stochastic numerical analysis. In the present paper, a stochastic generating function approach is proposed, based on the derivation of stochastic Hamilton-Jacobi PDEs satisfied by the generating functions, and a method of approximating solutions to them. Thus, a systematic approach of constructing stochastic symplectic methods is provided. As validation, numerical tests on several stochastic Hamiltonian systems are performed, where some symplectic schemes are constructed via stochastic generating functions. Moreover, generating functions for some known stochastic symplectic mappings are given.
    Mathematics Subject Classification: 65P10, 65C30, 65C20, 65H10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. Burrage and P. M. Burrage, Order conditions of stochastic Runge-Kutta methods by B-series, SIAM J. Numer. Anal., 38 (2000), 1626-1646.doi: 10.1137/S0036142999363206.

    [2]

    K. Feng, On difference schemes and symplectic geometry, in "Proceedings of the 1984 Beijing symposium Symposium on Differential Geometry & Differential Equations," Beijing, (1985), 42-58.

    [3]

    K. Feng, H. M. Wu, M. Z. Qin and D. L. Wang, Construction of canonical difference schemes for Hamiltonian formalism via generating functions, J. Comp. Math., 7 (1989), 71-96.

    [4]

    E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration," Springer-Verlag Berlin Heidelberg, 2002.

    [5]

    D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43 (2001), 525-546.doi: 10.1137/S0036144500378302.

    [6]

    J. L. Hong, R. Scherer and L. J. Wang, Midpoint rule for a linear stochastic oscillator with additive noise, Neural Parallel and Scientific Computing, 14 (2006), 1-12.

    [7]

    J. L. Hong, R. Scherer and L. J. Wang, Predictor-corrector methods for a linear stochastic oscillator with additive noise, Mathematical and Computer Modeling, 46 (2007), 738-764.doi: 10.1016/j.mcm.2006.12.009.

    [8]

    P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations," Springer-Verlag Berlin Heidelberg, 1992.

    [9]

    J. A. Lázaro-Camí and J. P. Ortega, The stochastic Hamilton-Jacobi equation, Journal of Geometric Machanics, 1 (2009), 295-315.doi: 10.3934/jgm.2009.1.295.

    [10]

    M. Leok and J. J. Zhang, Discrete Hamiltonian variational integrators, IMA J. Numer. Anal., 31 (2011), 1497-1532.doi: 10.1093/imanum/drq027.

    [11]

    Q. Ma, D. Q. Ding and X. H. Ding, Symplectic conditions and stochastic generating functions of stochastic Runge-Kutta methods for stochastic Hamiltonian systems with multiplicative noise, Applied Mathematics and Computation, 219 (2012), 635-643.doi: 10.1016/j.amc.2012.06.053.

    [12]

    X. Mao, "Stochastic Differential Equations and Their Applications," Chichester: Horwood Pub., 1997.

    [13]

    G. N. Milstein, "Numerical Integration of Stochastic Differential Equations," Kluwer Academic Publishers, 1995.

    [14]

    G. N. Milstein, Y. M. Repin and M. V. Tretyakov, Symplectic integration of hamiltonian systems with additive noise, SIAM J. Numer. Anal., 39 (2002), 2066-2088.doi: 10.1137/S0036142901387440.

    [15]

    G. N. Milstein, Y. M. Repin and M. V. Tretyakov, Numerical methods for stochastic systems preserving symplectic structure, SIAM J. Numer. Anal., 40 (2002), 1583-1604.doi: 10.1137/S0036142901395588.

    [16]

    T. Misawa, On stochastic Hamiltonian mechanics for diffusion processes, Nuovo Cimento B, 91 (1986), 1-24.doi: 10.1007/BF02722218.

    [17]

    T. Misawa, A stochastic Hamilton-Jacobi theory in stochastic hamiltonian mechanics for diffusion processes, Nuovo Cimento B, 99 (1987), 179-199.doi: 10.1007/BF02726581.

    [18]

    R. D. Ruth, A canonical integration technique, IEEE Trans. Nuclear Science, (1983), NS-30, 2669-2671.

    [19]

    A. H. Strømmen Melbø and D. J. Higham, Numerical simulation of a linear stochastic oscillator with additive noise, Appl. Numer. Math., 51 (2004), 89-99.doi: 10.1016/j.apnum.2004.02.003.

    [20]

    R. de Vogelaere, Methods of integration which preserve the contact transformation property of the hamiltonian equations, Report No. 4, Dept. Math., Univ. of Notre Dame, Notre Dame, Ind., 1956.

    [21]

    L. J. Wang, "Variational Integrators and Generating Functions for Stochastic Hamiltonian Systems," Ph.D thesis, Karlsruhe Institute of Technology, KIT Scientific Publishing, 2007.

    [22]

    L. J. Wang, J. L. Hong, R. Scherer and F. S. Bai, Dynamics and variational integrators of stochastic Hamiltonian systems, International Journal of Numerical Analysis and Modeling, 6 (2009), 586-602.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(115) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return