\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Uniform attractor of the non-autonomous discrete Selkov model

Abstract Related Papers Cited by
  • This paper studies the asymptotic behavior of solutions for the non-autonomous lattice Selkov model. We prove the existence of a uniform attractor for the generated family of processes and obtain an upper bound of the Kolmogorov $\varepsilon$-entropy for it. Also we establish the upper semicontinuity of the uniform attractor when the infinite lattice systems are approximated by finite lattice systems.
    Mathematics Subject Classification: 37L30, 35B40, 35B41.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Ahmed Y. Abdallah, Uniform exponential attractor for first order non-autonomous lattice dynamical systems, J. Differential Equations, 251 (2011), 1489-1504.doi: 10.1016/j.jde.2011.05.030.

    [2]

    Ahmed Y. Abdallah, Exponential attractors for first-order lattice dynamical systems, J. Math. Anal. Appl., 339 (2008), 217-224.doi: 10.1016/j.jmaa.2007.06.054.

    [3]

    P. W. Bates, X. Chen and A. Chmaj, Travelling waves of bistable dynamics on a lattice, SIAM J. Math. Anal., 35 (2003), 520-546.doi: 10.1137/S0036141000374002.

    [4]

    P. W. Bates, H. Lisei and K. Lu, Attrators for stochastic lattice dynamical systems, Stoch. Dyna., 6 (2006), 1-21.doi: 10.1142/S0219493706001621.

    [5]

    P. W. Bates, K. Lu and B. Wang, Attractors for lattice dynamical systems, Inter. J. Bifur. Chaos, 11 (2001), 143-153.doi: 10.1142/S0218127401002031.

    [6]

    W.-J. Beyn and S. Yu. Pilyugin, Attractors of reaction diffusion systems on infinite lattices, J. Dyn. Diff. Eqs., 15 (2003), 485-515.doi: 10.1023/B:JODY.0000009745.41889.30.

    [7]

    H. Chate and M. Courbage, Lattice systems, Phys. D, 103 (1997), 1-612.doi: 10.1016/S0167-2789(96)00249-7.

    [8]

    S.-N. Chow, Lattice dynamical systems, in "Dynamical Systems," Lecture Notes in Math., 1822, Springer, Berlin, (2003), 1-102.doi: 10.1007/978-3-540-45204-1_1.

    [9]

    S.-N. Chow and J. M. Paret, Pattern formation and spatial chaos in lattice dynamical systems, IEEE Trans. Circuits Syst., 42 (1995), 746-751.doi: 10.1109/81.473583.

    [10]

    T. L. Carrol and L. M. Pecora, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821-824.doi: 10.1103/PhysRevLett.64.821.

    [11]

    S.-N. Chow, J. M. Paret and W. Shen, Traveling waves in lattice dynamical systems, J. Differential Equations, 149 (1998), 248-291.doi: 10.1006/jdeq.1998.3478.

    [12]

    S.-N. Chow, J. M. Paret and E. S. Van Vleck, Pattern formation and spatial chaos in spatially discrete evolution equations, Random Comp. Dyna., 4 (1996), 109-178.

    [13]

    L. O. Chua and T. Roska, The CNN paradigm, IEEE Trans. Circuits Syst., 40 (1993), 147-156.doi: 10.1109/81.222795.

    [14]

    L. O. Chua and Y. Yang, Cellular neural networks: theory, IEEE Trans. Circuits Syst., 35 (1988), 1257-1272.doi: 10.1109/31.7600.

    [15]

    V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics," AMS Colloquium Publications, 49, AMS, Providence, RI, 2002.

    [16]

    T. Erneux and G. Nicolis, Propagating waves in discrete bistable reaction diffusion systems, Phys. D, 67 (1993), 237-244.doi: 10.1016/0167-2789(93)90208-I.

    [17]

    L. Fabiny, P. Colet and R. Roy, Coherence and phase dynamics of spatially coupled solid-state lasers, Phys. Rev. A, 47 (1993), 4287-4296.doi: 10.1103/PhysRevA.47.4287.

    [18]

    J. K. Hale, "Asymptotic Behavior of Dissipative Systems," Math. Surveys and Monographs, AMS, Providence, RI, 1988.

    [19]

    M. Hillert, A solid-solution model for inhomogeneous systems, Acta Metall., 9 (1961), 525-535.doi: 10.1016/0001-6160(61)90155-9.

    [20]

    X. Han, Random attractors for second order stochastic lattice dynamical systems with multiplicative noise in weighted spaces, Stoch. Dyn., 12 (2012), 1150024, 20 pp.doi: 10.1142/S0219493711500249.

    [21]

    X. Han, W. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.doi: 10.1016/j.jde.2010.10.018.

    [22]

    X. Jia, C. Zhao and X. Yang, Global attractor and Kolmogorov entropy of three component reversible Gray-Scott model on infinite lattices, Appl. Math. Comp., 218 (2012), 9781-9789.doi: 10.1016/j.amc.2012.03.036.

    [23]

    J. P. Keener, Propagation and its failure in coupled systems of discret excitable cells, SIAM J. Appl. Math., 47 (1987), 556-572.doi: 10.1137/0147038.

    [24]

    R. Kapval, Discrete models for chemically reacting systems, J. Math. Chem., 6 (1991), 113-163.doi: 10.1007/BF01192578.

    [25]

    N. I. Karachalios and A. N. Yannacopoulos, Global existence and compact attractors for the discrete nonlinear Schrödinger equation, J. Differntial Equations, 217 (2005), 88-123.doi: 10.1016/j.jde.2005.06.002.

    [26]

    O. Ladyzhenskaya, "Attractors for Semigroups and Evolution Equations," Cambridge University Press, Cambridge, 1991.doi: 10.1017/CBO9780511569418.

    [27]

    Y. Lv and J. H. Sun, Dynamical behavior for stochastic lattice systems, Chaos Soli. Fract., 27 (2006), 1080-1090.doi: 10.1016/j.chaos.2005.04.089.

    [28]

    P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems, Nonl. Analysis, 71 (2009), 3956-3963.doi: 10.1016/j.na.2009.02.065.

    [29]

    E. E. Selkov, Self-oscillations in glycolysis: A simple kinetic model, Euorpean J. Bio., 4 (1968), 79-86.

    [30]

    G. Sell and Y. You, "Dynamics of Evolutionary Equations," Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002.

    [31]

    R. Temam, "Infinite Dimensional Dynamical Systems in Mechanics and Physics," Springer, Berlin, 1997.

    [32]

    T. Caraballo, F. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multipliative noise and non-Lipschitz nonlinearities, J. Differential Equations, 253 (2012), 667-693.doi: 10.1016/j.jde.2012.03.020.

    [33]

    T. Caraballo, F. Morillas and J. Valero, Random attractors for sotchastic lattice systems with non-Lipschitz nonlinearity, J. Difference Equ. Appl., 17 (2011), 161-184.doi: 10.1080/10236198.2010.549010.

    [34]

    T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise, Front. Math. China, 3 (2008), 317-335.doi: 10.1007/s11464-008-0028-7.

    [35]

    E. V. Vlecka and B. Wang, Attractors for lattice FitzHugh-Nagumo systems, Phys. D, 212 (2005), 317-336.doi: 10.1016/j.physd.2005.10.006.

    [36]

    B. Wang, Dynamics of systems on infinite lattices, J. Differential Equations, 221 (2006), 224-245.doi: 10.1016/j.jde.2005.01.003.

    [37]

    B. Wang, Asymptotic behavior of non-autonomous lattice system, J. Math. Anal. Appl., 331 (2007), 121-136.doi: 10.1016/j.jmaa.2006.08.070.

    [38]

    B. Wang, Uniform attractors of non-autonomous discret reaction-diffusion systems in weighted spaces, Inter. J. Bifur. Chaos, 18 (2008), 695-716.doi: 10.1142/S0218127408020598.

    [39]

    R. L. Winaow, A. L. Kimball and A. Varghese, Simulating cardiac sinus and atrial network dynamics on connection machine, Phys. D, 64 (1993), 281-298.

    [40]

    Y. You, Asymptotic dynamics of Selkov equations, Disc. Cont. Dyn. Syst. (S), 2 (2009), 193-219.doi: 10.3934/dcdss.2009.2.193.

    [41]

    S. Zhou, Attractors for first order dissipative lattice dynamical systems, Phys. D, 178 (2003), 51-61.doi: 10.1016/S0167-2789(02)00807-2.

    [42]

    S. Zhou, Attractors and approximations for lattice dynamincal systems, J. Differential Equations, 200 (2004), 342-368.doi: 10.1016/j.jde.2004.02.005.

    [43]

    S. Zhou, Attractors for second order lattice dynamical systems, J. Differential Equations, 179 (2002), 605-624.doi: 10.1006/jdeq.2001.4032.

    [44]

    S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems, J. Differential Equations, 224 (2006), 172-204.doi: 10.1016/j.jde.2005.06.024.

    [45]

    X. Zhao and S. Zhou, Kernel sections for processes and nonautonomous lattice systems, Disc. Cont. Dyn. Syst. (B), 9 (2008), 763-785.doi: 10.3934/dcdsb.2008.9.763.

    [46]

    C. Zhao and S. Zhou, Compact kernel sections for nonautonomous Klein-Gordon-Schr\"odinger equations on infinite lattices, J. Math. Anal. Appl., 332 (2007), 32-56.doi: 10.1016/j.jmaa.2006.10.002.

    [47]

    C. Zhao and S. Zhou, Compact kernel sections of long-wave-short-wave resonance equations on infinite lattices, Nonl. Analysis, 68 (2008), 652-670.doi: 10.1016/j.na.2006.11.027.

    [48]

    C. Zhao and S. Zhou, Compact uniform attractors for dissipative lattice dynamical systems with delays, Disc. Cont. Dyn. Syst. (A), 21 (2008), 643-663.doi: 10.3934/dcds.2008.21.643.

    [49]

    C. Zhao and S. Zhou, Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications, J. Math. Anal. Appl., 354 (2009), 78-95.doi: 10.1016/j.jmaa.2008.12.036.

    [50]

    S. Zhou, C. Zhao and X. Liao, Compact uniform attractors for dissipative non-autonomous lattice dynamical systems, Comm. Pure Appl. Anal., 6 (2007), 1087-1111.doi: 10.3934/cpaa.2007.6.1087.

    [51]

    S. Zhou, C. Zhao and Y. Wang, Finite dimensionality and upper semicontinuity of compact kernel sections of non-autonomous lattice systems, Disc. Cont. Dyn. Syst. (A), 21 (2008), 1259-1277.doi: 10.3934/dcds.2008.21.1259.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(105) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return