Citation: |
[1] |
V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Academic Press, Boston, 1993. |
[2] |
V. Barbu, The time optimal control of Navier-Stokes equations, Systems Control Lett., 30 (1997), 93-100.doi: 10.1016/S0167-6911(96)00083-7. |
[3] |
H. O. Fattorini, Time optimal control of solutions of operational differential equations, J. SIAM Control, 2 (1964), 54-59.doi: 10.1137/0302005. |
[4] |
H. O. Fattorini, Infinite Dimensional Linear Control Systems: The Time Optimal and Norm Optimal Problems, North-Holland Mathematics Studies 201, ELSEVIER, 2005. |
[5] |
K. Kunisch and L. J. Wang, Time optimal controls of the linear Fitzhugh-Nagumo equation with pointwise control constraints, J. Math. Anal. Appl., 395 (2012), 114-130.doi: 10.1016/j.jmaa.2012.05.028. |
[6] |
K. Kunisch and L. J. Wang, Time optimal control of the heat equation with pointwise control constraints, ESAIM: Control Optim. Calc. Var., 19 (2013), 460-485.doi: 10.1051/cocv/2012017. |
[7] |
K. Kunisch and L. J. Wang, Bang-bang property of time optimal controls of Burgers equation, Discrete Contin. Dyn. Syst., 34 (2014), 3611-3637.doi: 10.3934/dcds.2014.34.3611. |
[8] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and Quasilinear Equations of parabolic Type, American Mathematical Society, 1968. |
[9] |
J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971. |
[10] |
V. J. Mizel and T. I. Seidman, An abstract bang-bang principle and time optimal boundary control of the heat equation, SIAM J. Control Optim., 35 (1997), 1204-1216.doi: 10.1137/S0363012996265470. |
[11] |
K. D. Phung and G. Wang, Quantitative unique continuation for the semilinear heat equation in a convex domain, J. Funct. Anal., 259 (2010), 1230-1247.doi: 10.1016/j.jfa.2010.04.015. |
[12] |
K. D. Phung, L. J. Wang and C. Zhang, Bang-bang property for time optimal control of semilinear heat equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 477-499.doi: 10.1016/j.anihpc.2013.04.005. |
[13] |
G. S. Wang, $L^\infty$-null controllability for the heat equtaion and its consequences for the time optimal control problem, SIAM J. Control Optim., 47 (2008), 1701-1720.doi: 10.1137/060678191. |
[14] |
G. S. Wang and L. J. Wang, The Bang-Bang principle of time optimal controls for the heat equation with internal controls, Systems Control Lett., 56 (2007), 709-713.doi: 10.1016/j.sysconle.2007.06.001. |
[15] |
L. J. Wang and G. S. Wang, The optimal time control of a phase-field system, SIAM J. Control Optim., 42 (2003), 1483-1508.doi: 10.1137/S0363012902405455. |