In this paper, we study the limiting behavior of dynamics for stochastic reaction-diffusion equations driven by an additive noise and a deterministic non-autonomous forcing on an (
Citation: |
F. Antoci
and M. Prizzi
, Reaction-diffusion equations on unbounded thin domains, Topol. Methods Nonlinear Anal., 18 (2001)
, 283-302.
doi: 10.12775/TMNA.2001.035.![]() ![]() ![]() |
|
L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998
doi: 10.1007/978-3-662-12878-7.![]() ![]() ![]() |
|
J. M. Arrieta
, A. N. Carvalho
and G. Lozada-Cruz
, Dynamics in dumbbell domains Ⅰ. Continuity of the set of equilibria, J. Differential Equations, 231 (2006)
, 551-597.
doi: 10.1016/j.jde.2006.06.002.![]() ![]() ![]() |
|
J. M. Arrieta
, A. N. Carvalho
and G. Lozada-Cruz
, Dynamics in dumbbell domains Ⅱ. The limiting problem, J. Differential Equations, 247 (2009)
, 174-202.
doi: 10.1016/j.jde.2009.03.014.![]() ![]() ![]() |
|
J. M. Arrieta
, A. N. Carvalho
and G. Lozada-Cruz
, Dynamics in dumbbell domains Ⅲ. Continuity of attractors, J. Differential Equations, 247 (2009)
, 225-259.
doi: 10.1016/j.jde.2008.12.014.![]() ![]() ![]() |
|
J. M. Arrieta
, A. N. Carvalho
, M. C. Pereira
and R. P. Da Silva
, Semilinear parabolic problems in thin domains with a highly oscillatory boundary, Nonlinear Anal., 74 (2011)
, 5111-5132.
doi: 10.1016/j.na.2011.05.006.![]() ![]() ![]() |
|
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.
![]() ![]() |
|
P. W. Bates
, K. Lu
and B. Wang
, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009)
, 845-869.
doi: 10.1016/j.jde.2008.05.017.![]() ![]() ![]() |
|
T. Caraballo
, I. D. Chueshov
and P. E. Kloeden
, Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain, SIAM J. Math. Anal., 38 (2007)
, 1489-1507.
doi: 10.1137/050647281.![]() ![]() ![]() |
|
T. Caraballo
, M. J. Garrido-Atienza
, B. Schmalfuss
and J. Valero
, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Continuous Dynam. Systems-A, 21 (2008)
, 415-443.
doi: 10.3934/dcds.2008.21.415.![]() ![]() ![]() |
|
T. Caraballo
, J. Real
and I. D. Chueshov
, Pullback attractors for stochastic heat equations in materials with memory, Discrete Continuous Dynam. Systems-B, 9 (2008)
, 525-539.
doi: 10.3934/dcdsb.2008.9.525.![]() ![]() ![]() |
|
I. D. Chueshov
and S. Kuksin
, Random kick-forced 3D Navier-Stokes equations in a thin domain, Arch. Ration. Mech. Anal., 188 (2008)
, 117-153.
doi: 10.1007/s00205-007-0068-2.![]() ![]() ![]() |
|
I. D. Chueshov
and S. Kuksin
, Stochastic 3D Navier-Stokes equations in a thin domain and its $α$-approximation, Phys. D, 237 (2008)
, 1352-1367.
doi: 10.1016/j.physd.2008.03.012.![]() ![]() ![]() |
|
I. S. Ciuperca
, Reaction-diffusion equations on thin domains with varying order of thinness, J. Differential Equations, 126 (1996)
, 244-291.
doi: 10.1006/jdeq.1996.0051.![]() ![]() ![]() |
|
H. Crauel
, A. Debussche
and F. Flandoli
, Random attractors, J. Dynam. Differential Equations, 9 (1997)
, 307-341.
doi: 10.1007/BF02219225.![]() ![]() ![]() |
|
H. Crauel
and F. Flandoli
, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994)
, 365-393.
doi: 10.1007/BF01193705.![]() ![]() ![]() |
|
T. Elsken
, Attractors for reaction-diffusion equations on thin domains whose linear part is non-self-adjoint, J. Differential Equations, 206 (2004)
, 94-126.
doi: 10.1016/j.jde.2004.07.025.![]() ![]() ![]() |
|
F. Flandoli
and B. Schmalfuss
, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996)
, 21-45.
doi: 10.1080/17442509608834083.![]() ![]() ![]() |
|
J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988.
![]() ![]() |
|
J. Hale
and G. Raugel
, Reaction-diffusion equations on thin domains, J. Math. Pures Appl., 71 (1992)
, 33-95.
![]() ![]() |
|
J. Hale
and G. Raugel
, A reaction-diffusion equation on a thin $L$-shaped domain, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995)
, 283-327.
doi: 10.1017/S0308210500028043.![]() ![]() ![]() |
|
R. Johnson
, M. Kamenskii
and P. Nistri
, Existence of periodic solutions of an autonomous damped wave equation in thin domains, J. Dynam. Differential Equations, 10 (1998)
, 409-424.
doi: 10.1023/A:1022601213052.![]() ![]() ![]() |
|
P. E. Kloeden
and J. A. Langa
, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. London, Ser. A, 463 (2007)
, 163-181.
doi: 10.1098/rspa.2006.1753.![]() ![]() ![]() |
|
D. Li
, B. Wang
and X. Wang
, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, J. Differential Equations, 262 (2017)
, 1575-1602.
doi: 10.1016/j.jde.2016.10.024.![]() ![]() ![]() |
|
W. Liu
and B. Wang
, Poisson-Nernst-Planck systems for narrow tubular-like membrane channels, J. Dynam. Differential Equations, 22 (2010)
, 413-437.
doi: 10.1007/s10884-010-9186-x.![]() ![]() ![]() |
|
Y. Morita
, Stable solutions to the Ginzburg-Landau equation with magnetic effect in a thin domain, Japan J. Indust. Appl. Math., 21 (2004)
, 129-147.
doi: 10.1007/BF03167468.![]() ![]() ![]() |
|
M. Prizzi
and K. P. Rybakowski
, Recent results on thin domain problems, Ⅱ, Topol. Methods Nonlinear Anal., 19 (2002)
, 199-219.
doi: 10.12775/TMNA.2002.010.![]() ![]() ![]() |
|
M. Prizzi
and K. P. Rybakowski
, The effect of domain squeezing upon the dynamics of reaction-diffusion equations, J. Differential Equations, 237 (2001)
, 271-320.
doi: 10.1006/jdeq.2000.3917.![]() ![]() ![]() |
|
G. Raugel
and G. Sell
, Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions, J. Amer. Math. Soc., 6 (1993)
, 503-568.
doi: 10.2307/2152776.![]() ![]() ![]() |
|
D. Ruelle
, Characteristic exponents for a viscous fluid subjected to time dependent forces, Comm. Math. Phys., 93 (1984)
, 285-300.
doi: 10.1007/BF01258529.![]() ![]() ![]() |
|
B. Schmalfuss
, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, (1992)
, 185-192.
![]() |
|
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997
doi: 10.1007/978-1-4612-0645-3.![]() ![]() ![]() |
|
S. M. Ulam and J. von Neumann, Random ergodic theorems, Bull. Amer. Math. Soc. , 51 (1945), p660.
![]() |
|
B. Wang
, Suffcient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012)
, 1544-1583.
doi: 10.1016/j.jde.2012.05.015.![]() ![]() ![]() |
|
B. Wang
, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Continuous Dynam. Systems-A, 34 (2014)
, 269-300.
doi: 10.3934/dcds.2014.34.269.![]() ![]() ![]() |
|
X. Wang
, K. Lu
and B. Wang
, Long term behavior of delay parabolic equations with additive noise and deterministic time dependent forcing, SIAM J. Appl. Dynam. Syst., 14 (2015)
, 1018-1047.
doi: 10.1137/140991819.![]() ![]() ![]() |