\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Validity of the Reynolds equation for miscible fluids in microchannels

Abstract Related Papers Cited by
  • In this paper, we consider asymptotic models for miscible flows in microchannels. The characteristics of the flows in microfluidics imply that usually the Hele-Shaw approximation is valid. We present asymptotic models in the Hele-Shaw regime for flows of miscible fluids in a channel in the case where the bottom and the top of the channels have been modified in two different ways. The first case concerns a flat bottom with slip boundary conditions obtained by chemical patterning. The second one is a non-flat bottom with a non-slipping surface. We derive in both cases 2.5D and 2D asymptotic models. We prove global well-posedness of the 2D model. We also prove that both approaches are asymptotically equivalent in the Hele-Shaw regime and we present direct 3D simulations showing that for passive mixing strategy, the Hele-Shaw approximation is not valid anymore.
    Mathematics Subject Classification: Primary: 76D07, 76D27; Secondary: 76D03.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Bayada and M. Chambat, New models in the theory of the hydrodynamic bifurcation of rough surfaces, J. Tribol., 110 (1988), 402-407.doi: 10.1115/1.3261642.

    [2]

    F. Boyer, Mathematical study of multi-phase flow under shear through order parameter formulation, Asymptotic Analysis, 20 (1999), 175-212.

    [3]

    F. Boyer and P. Fabrie, "Éléments d'Analyse pour l'Étude de Quelques Modèles d'Écoulements de Fluides Visqueux Incompressibles," Mathématiques & Applications (Berlin), 52, Springer-Verlag, Berlin, 2006.

    [4]

    D. Bresch, C. Choquet, L. Chupin, T. Colin and M. Gisclon, Roughness-induced effect at main order on the Reynolds approximation, Multiscale Modeling and Simulation, 8 (2010), 997-1017.doi: 10.1137/090754996.

    [5]

    J. Dambrine, "Modélisation et Étude Numérique de Quelques Écoulements de Fluides Complexes en Microfluidiques," Thèse de l'Université Bordeaux 1, 2009.

    [6]

    J. Dambrine, B. Géraud and J. B. Salmon, Interdiffusion of liquids of different viscosities in a microchannel, New Journal of Physics, 2009.

    [7]

    J. Fernandez, P. Kurowski, P. Petitjean and E. Meiburg, Density-driven unstable flows of miscible fluids in a Hele-Shaw cell, J. Fluid. Mech., 451 (2002), 239-260.

    [8]

    C. G. Gal and M. Grasselli, Instability of two-phase flows: A lower bound on the dimension of the global attractor of the Cahn-Hilliard-Navier-Stokes system, Physica D, 240 (2011), 629-635.doi: 10.1016/j.physd.2010.11.014.

    [9]

    D. Gérard-Varet and N. Masmoudi, Relevance of the slip condition for fluid flows near an irregular boundary, Comm. Math. Phys., 295 (2010), 99-137.

    [10]

    A. Günther, K.-F. Jensen, Multiphase microfluidics: From flow characteristics to chemical and material synthesis, Lab on a Chip, 2006.

    [11]

    D. Joseph and Y. Renardy, "Fundamentals of Two Fluid Dynamics. Part I. Mathematical Theory and Applications," Interdisciplinary Applied Mathematics, 3, Springer-Verlag, New York, 1993.

    [12]

    G. Karniadakis and A. Beskok, "Micro Flows: Fundamental and Simulation," Springer-Verlag, 2002.

    [13]

    O. Kuksenok and A. C. Balazs, Simulating the dynamic behavior of immiscible binary fluids in three-dimensional chemically patterned microchannels, Physical Review E, 2003.

    [14]

    O. Kuksenok and A. C. Balazs, Structures formation in binary fluids driven through patterned microchannels: Effect of hydrodynamics and arrangement of surface patterns, Physica D, 2004.

    [15]

    S. Li, J. Lowengrub and P. Leo, A rescaling scheme with application to the long-time simulation of viscous fingering in a Hele-Shaw cell, J. Comp. Phys., 225 (2007), 534-567.

    [16]

    X.-D. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes, Journal of Computational Physics, 115 (1994), 200-212.doi: 10.1006/jcph.1994.1187.

    [17]

    N.-T. Nguyen and Z. Wu, Micromixers-a review, Journal of Micromechanics and Microengineering, 2010.

    [18]

    P. G. Saffman and G. Taylor, The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid, Proc. of the Roy. Soc. London Ser A, 245 (1958), 312-329.doi: 10.1098/rspa.1958.0085.

    [19]

    D. Schafroth, N. Goyal and E. Meiburg, Miscible displacements in Hele-Shaw cells: Nonmonotonic viscosity profiles, European Journal of Mechanics B Fluids, 26 (2007), 444-453.doi: 10.1016/j.euromechflu.2006.09.001.

    [20]

    J. Simon, Compacts sets in the space $L^p(0,T;B)$, Annali. Mat. Pura. Applicata. (4), 146 (1987), 65-96.

    [21]

    A. D. Stroock, S. K. W. Dertinger, A. Adjari, I. Mezić, H. A. Stone and G. M. Whitesides, Chaotic mixers in microchannels, Science, 2002.

    [22]

    A. D. Stroock, S. K. W. Dertinger, G. M. Whitesides and A. Adjari, Patterning flows using grooved surfaces, Analytical Chemistry, 2002.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(149) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return