\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Gravitational and electromagnetic properties of almost standing fields

Abstract Related Papers Cited by
  • For a scalar field propagating at light velocity $c$, kinematic properties of standing waves with constant frequency $\omega{}$ and velocity $v$, are formally identical with mechanic properties of isolated matter. They are both described by equations with the same mathematical structure, expressed by the Lorentz transformation with constant velocities $c$ and $v$. For almost standing waves, the variations of constant quantities lead to their dynamic properties. When they arise from adiabatic variations of the frequency $\Omega(x,t) = \omega \pm \delta\Omega(x,t)$, with $\omega{}$ constant, and $\delta\Omega(x,t) \ll \omega{}$, they lead to interactions which are formally identical with electromagnetic interactions. When they derive from variations of the field velocity $C(x,t) = c \pm \delta C(x,t)$, with $c$ constant, and $\delta C(x,t) \ll c$, they lead to interactions which are formally identical with gravitational interactions. The correspondence between almost standing waves of the field and matter, offers a common frame allowing an approach to investigate how gravitational and electromagnetic properties articulate together.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. Elbaz, L'onde stationnaire et la transformation de Lorentz, C.R.Acad. Sc. Paris,. 298 (1984), 543-546.

    [2]

    C. Elbaz, Proprietes cinematiques des particules matérielles et des ondes stationnaires du champ, Annales de la Fondation Louis de Broglie, 11 (1986), 65-84.

    [3]

    C. Elbaz, Proprietes dynamiques des particules matérielles et des ondes stationnaires du champ, Annales de la Fondation Louis de Broglie, 14 (1989), 165-176.

    [4]

    A. Miranville and R. Temam, "Modelisation Mathematique des Milieux Continus," Springer Verlag, 2003.

    [5]

    R. Temam, "Infinite Dimensional Dynamical Systems in Mechanics and Physics," Second edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997.

    [6]

    G. I. Sivashinsky, The de Broglie soliton as a localized excitation of the action function, Phys. D, 240 (2011), 406-409.doi: 10.1016/j.physd.2010.10.002.

    [7]

    C. Elbaz, Classical mechanics of an extended material particle, Phys. Lett. A, 204 (1995), 229-235.doi: 10.1016/0375-9601(95)00470-N.

    [8]

    C. Elbaz, Dynamic properties of almost monochromatic standing waves, Asymptotic Analysis, 68 (2010), 77-88.

    [9]

    L. Landau and E. Lifchitz, "The Classical Theory of Fields," Pergamon, 1962.

    [10]

    M. Born and E. Wolf, "Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light," With contributions by A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman and W. L. Wilcock, Third revised edition, Pergamon Press, Oxford-New York-Paris, 1965.

    [11]

    C. Elbaz, Optical properties of the Compton effect, J. Phys. Math. Gen., 20 (1987), 279.doi: 10.1088/0305-4470/20/5/004.

    [12]

    C. Elbaz, On self-field electromagnetic properties for extended material particles, Phys. Lett. A, 127 (1988), 308-314.doi: 10.1016/0375-9601(88)90574-9.

    [13]

    A. Einstein, Lichtgeswindigkeit und Statik des Gravitationsfeldes, Annalen der Physik, 38 (1912), 355-369.doi: 10.1002/andp.19123430704.

    [14]

    G. C. Tannoudji and S. Hudlet, A new scientific revolution at the horizon?, in "L'Univers Invisible," Hermann, Paris, 2009.

    [15]

    T. Padmanabhan, "Gravitation-Foundations and Frontiers," Cambridge Univ. Press, Cambrige, U.K, 2010.

    [16]

    E. Verlinde, On the origin of gravity and the laws of Newton, arXiv:1001.0785, 2010.

    [17]

    R. C. Jennison and A. J. Drinkwater, An approach to the understanding of inertia, J. Phys. A, 10 (1977), 167.doi: 10.1088/0305-4470/10/2/005.

    [18]

    R. C. Jennison, The inertial mass and anomalous internal momentum of a cavity, J. Phys. A, 13 (1980), 2247.doi: 10.1088/0305-4470/13/6/043.

    [19]

    M. Molski, Extended wave-particle decription of longitudinal photons, J. Phys. A, 24 (1991), 5063.doi: 10.1088/0305-4470/24/21/018.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(146) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return