Advanced Search
Article Contents
Article Contents

A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems

  • * Corresponding author: Huiqing Zhu

    * Corresponding author: Huiqing Zhu

The first author is supported by National Natural Science Foundation of China (No. 11501527)

Abstract Full Text(HTML) Figure(6) / Table(2) Related Papers Cited by
  • In this paper, an anisotropic bilinear finite element method is constructed for the elliptic boundary layer optimal control problems. Supercloseness properties of the numerical state and numerical adjoint state in a $ \epsilon $-norm are established on anisotropic meshes. Moreover, an interpolation type post-processed solution is shown to be superconvergent of order $ O(N^{-2}) $, where the total number of nodes is of $ O(N^2) $. Finally, numerical results are provided to verify the theoretical analysis.

    Mathematics Subject Classification: Primary: 65M60, 49K20; Secondary: 65J10.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Anisotropic mesh (left) and uniform mesh (right)

    Figure 2.  Big element $ K_{0} $

    Figure 3.  The profile of $ y_h $ (left plot) and $ p_h $ (right plot) on a uniform mesh with $ N = 8 $

    Figure 4.  Pointwise errors of $ |y-y_h| $ (left plot) and $ |p-p_h| $ (right plot) on a uniform mesh with $ N = 8 $

    Figure 5.  The profile of $ y_h $ (left plot) and $ p_h $ (right plot) on an anisotropic mesh with $ N = 8 $

    Figure 6.  Pointwise errors of $ |y-y_h| $ (left plot) and $ |p-p_h| $ (right plot) on an anisotropic mesh with $ N = 8 $

    Table 1.  Errors and convergence rates on uniform meshes

    $N$ 4 8 16 32 64
    $\|u-u_h\|_{0}$ 4.1470E-02 2.7610E-02 1.7622E-02 1.0661E-02 5.6118E-03
    order / 0.5869 0.6478 0.7250 0.9258
    $|||\Pi_{h} y-y_h|||$ 5.0583E-02 3.5215E-02 2.4487E-02 1.6591E-02 9.9351E-03
    order / 0.5225 0.5242 0.5616 0.7398
    $|||\Pi_{h} p-p_h|||$ 4.8403E-02 3.4837E-02 2.4420E-02 1.6569E-02 9.9076E-03
    order / 0.4745 0.5126 0.5596 0.7419
    $|||y-\Pi_{2h}y_h|||$ 1.7466E-01 9.7410E-02 5.7862E-02 3.5868E-02 2.1591E-02
    order / 0.8424 0.7515 0.6899 0.7323
    $|||p-\Pi_{2h}p_h|||$ 1.7207E-01 9.6955E-02 5.7777E-02 3.5844E-02 2.1562E-02
    order / 0.8276 0.7468 0.6888 0.7332
     | Show Table
    DownLoad: CSV

    Table 2.  Errors and convergence rates on anisotropic meshes

    $N$ 4 8 16 32 64
    $\|u-u_h\|_{0}$ 1.1762E-02 3.0109E-03 7.5308E-04 1.8747E-04 4.6824E-05
    order / 1.9659 1.9993 2.0062 2.0013
    $|||\Pi_{h} y-y_h|||$ 8.5488E-03 2.9582E-03 8.8988E-04 2.3807E-04 6.2920E-05
    order / 1.5310 1.7330 1.9022 1.9198
    $|||\Pi_{h} p-p_h|||$ 6.3618E-03 2.5354E-03 7.8790E-04 2.1187E-04 5.8477E-05
    order / 1.3272 1.6861 1.8949 1.8572
    $|||y-\Pi_{2h}y_h|||$ 1.2562E-02 4.3649E-03 1.2406E-03 3.0455E-04 7.6278E-05
    order / 1.5250 1.8149 2.0263 1.9974
    $|||p-\Pi_{2h}p_h|||$ 1.0955E-02 4.0558E-03 1.1598E-03 2.8267E-04 7.3036E-05
    order / 1.4335 1.8061 2.0367 1.9524
     | Show Table
    DownLoad: CSV
  • [1] A. AllendesE. Hernández and E. Otárola, A robust numerical method for a control problem involving singularly perturbed equations, Computers and Mathematics with Applications, 72 (2016), 974-991.  doi: 10.1016/j.camwa.2016.06.010.
    [2] T. Apel and G. Lube, Anisotropic mesh refinement for a singularly perturbed reaction diffusion model problem, Applied Numerical Mathematics, 26 (1998), 415-433.  doi: 10.1016/S0168-9274(97)00106-2.
    [3] R. BeckerH. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concept, SIAM Journal on Control and Optimization, 39 (2000), 113-132.  doi: 10.1137/S0363012999351097.
    [4] J. Bonnans and H. Zidani, Optimal control problems with partially polyhedric constraints, SIAM Journal on Control and Optimization, 37 (1999), 1726-1741.  doi: 10.1137/S0363012998333724.
    [5] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, Berlin, 1994. doi: 10.1007/978-1-4757-4338-8.
    [6] P. Das, An a posteriori based convergence analysis for a nonlinear singularly perturbed system of delay differential equations on an adaptive mesh, Numerical Algorithms, 81 (2019), 465-487.  doi: 10.1007/s11075-018-0557-4.
    [7] R. Dur$\acute{a}$n and A. Lombardi, Error estimates on anisotropic $Q_1$ elements for functions in weighted Sobolev spaces, Mathematics of Computation, 74 (2005), 1679-1706.  doi: 10.1090/S0025-5718-05-01732-1.
    [8] R. S. Falk, Approximation of a class of optimal control problems with order of convergence estimates, Journal of Mathematical Analysis and Applications, 44 (1973), 28-47.  doi: 10.1016/0022-247X(73)90022-X.
    [9] W. Gong and N. N. Yan, Adaptive finite element method for elliptic optimal control problems: Convergence and optimality, Numerische Mathematik, 135 (2017), 1121-1170.  doi: 10.1007/s00211-016-0827-9.
    [10] W. GongH. P. Liu and N. N. Yan, Adaptive finite element method for parabolic equations with Dirac measure, Computer Methods in Applied Mechanics and Engineering, 328 (2018), 217-241.  doi: 10.1016/j.cma.2017.08.051.
    [11] H. B. Guan and D. Y. Shi, A high accuracy NFEM for constrained optimal control problems governed by elliptic equations, Applied Mathematics and Computation, 245 (2014), 382-390.  doi: 10.1016/j.amc.2014.07.077.
    [12] H. B. GuanD. Y. Shi and X. F. Guan, High accuracy analysis of nonconforming MFEM for constrained optimal control problems governed by Stokes equations, Applied Mathematics Letters, 53 (2016), 17-24.  doi: 10.1016/j.aml.2015.09.016.
    [13] H. B. Guan and D. Y. Shi, An efficient NFEM for optimal control problems governed by a bilinear state equation, Computers and Mathematics with Applications, 77 (2019), 1821-1827.  doi: 10.1016/j.camwa.2018.11.017.
    [14] W. Hackbusch, Multigrid Methods and Applications, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-02427-0.
    [15] M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case, Computational Optimization and Applications, 30 (2005), 45-63.  doi: 10.1007/s10589-005-4559-5.
    [16] S. Kumar and M. Kumar, An analysis of overlapping domain decomposition methods for singularly perturbed reaction-diffusion problems, Journal of Computational and Applied Mathematics, 281 (2015), 250-262.  doi: 10.1016/j.cam.2014.12.018.
    [17] S. Kumar and S. C. S. Rao, A robust domain decomposition algorithm for singularly perturbed semilinear systems, International Journal of Computer Mathematics, 94 (2017), 1108-1122.  doi: 10.1080/00207160.2016.1184257.
    [18] J. C. Li, Convergence and superconvergence analysis of finite element methods on highly nonuniform anisotropic meshes for singularly perturbed reaction-diffusion problems, Applied Numerical Mathematics, 36 (2001), 129-154.  doi: 10.1016/S0168-9274(99)00145-2.
    [19] J. C. Li and M. F. Wheeler, Uniform convergence and superconvergence of mixed finite element methods on anisotropically refined grids, SIAM Journal on Numerical Analysis, 38 (2000), 770-798.  doi: 10.1137/S0036142999351212.
    [20] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.
    [21] Q. LinL. Tobiska and A.H. Zhou, Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation, IMA Journal of Numerical Analysis, 25 (2005), 160-181.  doi: 10.1093/imanum/drh008.
    [22] L. B. Liu and Y. P. Chen, An adaptive moving grid method for a system of singularly perturbed initial value problems, Journal of Computational and Applied Mathematics, 274 (2015), 11-22.  doi: 10.1016/j.cam.2014.06.022.
    [23] W. B. Liu and N. N. Yan, A posteriori error estimates for control problems governed by Stokes equations, SIAM Journal on Numerical Analysis, 40 (2002), 1850-1869.  doi: 10.1137/S0036142901384009.
    [24] G. Lube and B. Tews, Optimal control of singularly perturbed advection-diffusion-reaction problems, Mathematical Models and Methods in Applied Sciences, 20 (2010), 375-395.  doi: 10.1142/S0218202510004271.
    [25] J. J. H. Miller, E. O'Riordan and G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapore, 1995. doi: 10.1142/2933.
    [26] H.-G. Roos, Layer-adapted grids for singular perturbation problems, Journal of Applied Mathematics and Mechanics, 78 (1998), 291-309.  doi: 10.1002/(SICI)1521-4001(199805)78:5<291::AID-ZAMM291>3.0.CO;2-R.
    [27] H.-G. Roos and C. Reibiger, Numerical analysis of a system of singularly perturbed convection-diffusion equations related to optimal control, Numerical Mathematics: Theory, Methods and Applications, 4 (2011), 562-575.  doi: 10.4208/nmtma.2011.m1101.
    [28] Z. M. Zhang, Finite element superconvergence on Shishkin mesh for 2-D convection-diffusion problems, Mathematics of Computation, 72 (2003), 1147-1177.  doi: 10.1090/S0025-5718-03-01486-8.
    [29] Z. M. Zhang and H. Q. Zhu, Uniform convergence of the LDG method for a singularly perturbed problem with the exponential boundary layer, Mathematics of Computation, 83 (2014), 635-663.  doi: 10.1090/S0025-5718-2013-02736-6.
    [30] H. Q. Zhu and Z. M. Zhang, Convergence analysis of the LDG method applied to singularly perturbed problems, Numerical Methods for Partial Differential Equations, 29 (2013), 396-421.  doi: 10.1002/num.21711.
  • 加载中




Article Metrics

HTML views(400) PDF downloads(243) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint