\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Dynamics of two phytoplankton species competing for light and nutrient with internal storage

Abstract Related Papers Cited by
  • We analyze a competition model of two phytoplankton species for a single nutrient with internal storage and light in a well mixed aquatic environment. We apply the theory of monotone dynamical system to determine the outcomes of competition: extinction of two species, competitive exclusion, stable coexistence and bistability of two species. We also present the graphical presentation to classify the competition outcomes and to compare outcome of models with and without internal storage.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Droop, Some thoughts on nutrient limitation in algae, J. Phycol., 9 (1973), 264-272.doi: 10.1111/j.1529-8817.1973.tb04092.x.

    [2]

    J. P. Grover, Constant- and variable-yield models of population growth: Responses to environmental variability and implications for competition, J. Theoret. Biol., 158 (1992), 409-428.doi: 10.1016/S0022-5193(05)80707-6.

    [3]

    S.-B. Hsu, K.-S. Cheng and S. P. Hubbell, Exploitative competition of microorganism for two complementary nutrients in continuous cultures, SIAM J. Appl. Math., 41 (1981), 422-444.doi: 10.1137/0141036.

    [4]

    S.-B. Hsu and T.-H. Hsu, Competitive exclusion of microbial species for a single-nutrient with internal storage, SIAM J. Appl. Math., 68 (2008), 1600-1617.doi: 10.1137/070700784.

    [5]

    S.-B. Hsu, S. P. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous culture of micro-organisms, SIAM J. Appl. Math., 32 (1977), 366-383.doi: 10.1137/0132030.

    [6]

    S.-B. Hsu, H. L. Smith and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Trans. Amer. Math. Soc., 348 (1996), 4083-4094.doi: 10.1090/S0002-9947-96-01724-2.

    [7]

    J. Huisman and F. J. Weissing, Light limited growth and competition for light in well-mixed aquatic environments: An elementary, Ecology, 75 (1994), 507-520.doi: 10.2307/1939554.

    [8]

    J. Huisman and F. J. Weissing, Competition for nutrients and light in a mixed water column: A theoretical analysis, Am. Nat., 146 (1995), 536-564.doi: 10.1086/285814.

    [9]

    J. Jiang, X. Liang and X. Zhao, Saddle-point behavior for monotone semifolws and reaction-diffusion models, J. Diff. Equations, 203 (2004), 313-330.doi: 10.1016/j.jde.2004.05.002.

    [10]

    B. Li and H. L. Smith, Global dynamics of microbial competition for two resources with internal storage, J. Math. Biol., 55 (2007), 481-515.doi: 10.1007/s00285-007-0092-8.

    [11]

    J. Passarge, S. Hol, M. Escher and J. Huisman, Competition for nutrients and light: Stable coexistence, alternative stable states, or competitive exclusion?, Ecological Monographs, 76 (2006), 57-72.doi: 10.1890/04-1824.

    [12]

    H. L. Smith and H. R. Thieme, Stable coexistence and bi-stablility for competitive systems on ordered Banach spaces, J. Diff. Equations, 176 (2001), 195-222.doi: 10.1006/jdeq.2001.3981.

    [13]

    H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge University Press, 1995.doi: 10.1017/CBO9780511530043.

    [14]

    D. Tilman, Resource Competition and Community Structure, Princeton University Press, New Jersey, 1982.

    [15]

    K. Yoshiyama, J. P. Mellard, E. Litchman and C. A. Klausmeier, Phytoplankton competition for nutrients and light in a statified water column, Am. Nat., 174 (2009), 190-203.doi: 10.1086/600113.

    [16]

    X.-Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003.doi: 10.1007/978-0-387-21761-1.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(62) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return