In this paper we prove an existence theorem for positive solutions of a nonlinear Dirichlet problem involving the p-Laplacian operator on a smooth bounded domain when a nonlinearity depending on the gradient is considered. Our main theorem extends a previous result by Ruiz in [
Citation: |
W. Allegretto
and Y. X. Huang
, A Picone's identity for the $p$-Laplacian and applications, Nonlinear Anal., 32 (1998)
, 819-830.
doi: 10.1016/S0362-546X(97)00530-0.![]() ![]() ![]() |
|
C. Azizieh
and P. Clement
, A priori estimates and continuation methods for positive solutions of $p$-Laplace equations, J. Diff. Eq., 179 (2002)
, 213-245.
doi: 10.1006/jdeq.2001.4029.![]() ![]() ![]() |
|
H. Brezis
and R. E. L. Turner
, On a class of superlinear elliptic problems, Comm. Partial Differential Equations, 2 (1977)
, 601-614.
doi: 10.1080/03605307708820041.![]() ![]() ![]() |
|
P. Clement
, R. Manasevich
and E. Mitidieri
, Positive solutions for a quasilinear system via blow-up, Comm. Partial Differential Equations, 18 (1993)
, 2071-2106.
doi: 10.1080/03605309308821005.![]() ![]() ![]() |
|
L. Damascelli
and F. Pascella
, Monotonicity and symmetry of solutions of $p$-Laplace equations, $1< p ≤ 2$, via the moving plane method, Ann. Scuola Norm. Pisa, Cl. Sci, 26 (1998)
, 689-707.
![]() ![]() |
|
E. Di Benedetto
, $C^{1, α}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983)
, 827-850.
doi: 10.1016/0362-546X(83)90061-5.![]() ![]() ![]() |
|
D. De Figueiredo
, P. L. Lions
and R. D. Nussbaum
, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl., 61 (1982)
, 41-63.
![]() ![]() |
|
L. Dupaigne
, M. Ghergu
and V. Rădulescu
, Lane-Emden-Fowler equations with convection and singular potential, J. Math. Pures Appl., 87 (2007)
, 563-581.
doi: 10.1016/j.matpur.2007.03.002.![]() ![]() ![]() |
|
L. Gasinski
and N. S. Papageorgiou
, Positive solutions for nonlinear elliptic problems with dependence on the gradient, J. Differential Equations, 263 (2017)
, 1451-1476.
doi: 10.1016/j.jde.2017.03.021.![]() ![]() ![]() |
|
M. Ghergu
and V. Rădulescu
, On a class of sublinear elliptic problems with convection term, J. Math. Anal. Appl., 311 (2005)
, 635-646.
doi: 10.1016/j.jmaa.2005.03.012.![]() ![]() ![]() |
|
B. Gidas
and J. Spruck
, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math, 34 (1981)
, 525-598.
doi: 10.1002/cpa.3160340406.![]() ![]() ![]() |
|
B. Gidas
and J. Spruck
, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981)
, 883-901.
doi: 10.1080/03605308108820196.![]() ![]() ![]() |
|
M. A. Krasnoselskii
, Fixed point of cone-compressing or cone-extending operators, Soviet. Math. Dokl., 1 (1960)
, 1285-1288.
![]() ![]() |
|
G. M. Lieberman
, Boundary regulary for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988)
, 1203-1219.
doi: 10.1016/0362-546X(88)90053-3.![]() ![]() ![]() |
|
E. Mitidieri
and S. I. Pohozaev
, The absence of global positive solutions to quasilinear elliptic inequalities, Dokl. Math., 57 (1998)
, 250--253.
![]() |
|
D. Motreanu
and M. Tanaka
, Existence of positive solutions for nonlinear elliptic equations with convection terms, Nonlinear Anal., 152 (2017)
, 38-59.
doi: 10.1016/j.na.2016.12.011.![]() ![]() ![]() |
|
P. Pucci and J. Serrin, The Strong Maximum Principle, Progress in Nonlinear Differential Equations and their Applications, 73, Birkhauser Publ., Switzerland, 2007, X, 234 pages.
![]() ![]() |
|
V. Rădulescu
, M. Xiang
and B. Zhang
, Existence of solutions for a bi-nonlocal fractional p-Kirchhoff type problem, Comput. Math. Appl., 71 (2016)
, 255-266.
doi: 10.1016/j.camwa.2015.11.017.![]() ![]() ![]() |
|
D. Ruiz
, A priori estimates and existence of positive solutions for strongly nonlinear problems, J. Differential Equations, 199 (2004)
, 96-114.
doi: 10.1016/j.jde.2003.10.021.![]() ![]() ![]() |
|
J. Serrin
, Local behavior of solutions of quasilinear equations, Acta Math., 111 (1964)
, 247-302.
doi: 10.1007/BF02391014.![]() ![]() ![]() |
|
J. Serrin
and H. Zou
, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math., 189 (2002)
, 79-142.
doi: 10.1007/BF02392645.![]() ![]() ![]() |
|
P. Tolksdorf
, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984)
, 126-150.
doi: 10.1016/0022-0396(84)90105-0.![]() ![]() ![]() |
|
N. Trudinger
, On Harnack type inequalities and their applications to quasilinear elliptic equations, Comm. Pure Appl. Math., 20 (1967)
, 721-747.
doi: 10.1002/cpa.3160200406.![]() ![]() ![]() |
|
J. L. Vázquez
, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984)
, 191-202.
doi: 10.1007/BF01449041.![]() ![]() ![]() |