This paper is concerned with the tempered pullback dynamics for a 3D modified Navier-Stokes equations with double time-delays, which includes delays on external force and convective terms respectively. Based on the property of monotone operator and some suitable hypotheses on the external forces, the existence and uniqueness of weak solutions can be shown in an appropriate functional Banach space. By using the energy equation technique and weak convergence method to achieve asymptotic compactness for the process, the existence of minimal family of pullback attractors has also been derived.
Citation: |
[1] |
H. Bae, Existence and analyticity of Lei-Lin solution to the Navier-Stokes equations, Proc. Amer. Math. Soc., 143 (2015), 2887-2892.
doi: 10.1090/S0002-9939-2015-12266-6.![]() ![]() ![]() |
[2] |
J. M. Ball, Global attractors for damped semi-linear wave equations, Disc. Cont. Dyn. Syst., 10 (2004), 31-52.
doi: 10.3934/dcds.2004.10.31.![]() ![]() ![]() |
[3] |
T. Buckmaster and V. Vicol, Nonuniqueness of weak solutions to the Navier-Stokes equation, Ann. Math., 189 (2019), 101-144.
doi: 10.4007/annals.2019.189.1.3.![]() ![]() ![]() |
[4] |
T. Caraballo and X. Han, A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions, Discrete Contin. Dyn. Syst. Ser. S, 8 (2015), 1079-1101.
doi: 10.3934/dcdss.2015.8.1079.![]() ![]() ![]() |
[5] |
T. Caraballo and J. Real, Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441-2453.
doi: 10.1098/rspa.2001.0807.![]() ![]() ![]() |
[6] |
T. Caraballo and J. Real, Asymptotic behaviour of Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181-3194.
doi: 10.1098/rspa.2003.1166.![]() ![]() ![]() |
[7] |
T. Caraballo and J. Real, Attractors for 2D Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.
doi: 10.1016/j.jde.2004.04.012.![]() ![]() ![]() |
[8] |
T. Caraballo, J. Real and A. M. Márquez, Three-dimensional system of globally modified Navier-Stokes equations with delay, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2869-2883.
doi: 10.1142/S0218127410027428.![]() ![]() ![]() |
[9] |
Y. Chen, X. Yang and M. Si, The long-time dynamics of 3D non-autonomous Navier-Stokes equations with variable viscosity, ScienceAsia, 44 (2018), 18-26.
doi: 10.2306/scienceasia1513-1874.2018.44.018.![]() ![]() |
[10] |
B. Dong and W. Jiang, On the decay of higher order derivatives of solutions to Ladyzhenskaya model for incompressible viscous flows, Sci. China Ser. A, 51 (2008), 925-934.
doi: 10.1007/s11425-007-0196-z.![]() ![]() ![]() |
[11] |
C. Foias, O. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511546754.![]() ![]() ![]() |
[12] |
J. García-Luengo, P. Marín-Rubio and G. Planas, Attractors for a double time-delayed 2D-Navier-Stokes model, Disc. Contin. Dyn. Syst., 34 (2014), 4085-4105.
doi: 10.3934/dcds.2014.34.4085.![]() ![]() ![]() |
[13] |
J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt equations, Nonlinearity, 25 (2012), 905-930.
doi: 10.1088/0951-7715/25/4/905.![]() ![]() ![]() |
[14] |
J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors in $V$ for nonautonomous 2D-Navier-Stokes equations and their tempered behavior, J. Differential Equations, 252 (2012), 4333-4356.
doi: 10.1016/j.jde.2012.01.010.![]() ![]() ![]() |
[15] |
J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors for 2D Navier-Stokes equations with delays and their regularity, Adv. Nonlinear Stud., 13 (2013), 331-357.
doi: 10.1515/ans-2013-0205.![]() ![]() ![]() |
[16] |
C. Guo, R. Lu, X. Yang and P. Zhang, Dynamics for three dimensional generalized Navier-Stokes equations with delay, Preprint, (2021).
![]() |
[17] |
S. M. Guzzo and G. Planas, On a class of three dimensional Navier-Stokes equations with bounded delay, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 225-238.
doi: 10.3934/dcdsb.2011.16.225.![]() ![]() ![]() |
[18] |
X. Han, P. E. Kloeden and B. Usman, Upper semi-continuous convergence of attractors for a Hopfield-type lattice model, Nonlinearity, 33 (2020), 1881-1906.
doi: 10.1088/1361-6544/ab6813.![]() ![]() ![]() |
[19] |
E. Hopf, Üeber die Anfangswertaufgable für die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1951), 213-231.
doi: 10.1002/mana.3210040121.![]() ![]() ![]() |
[20] |
A. V. Kapustyan and J. Valero, Weak and strong attractors for the 3D Navier-Stokes system, J. Differential Equations, 240 (2007), 249-278.
doi: 10.1016/j.jde.2007.06.008.![]() ![]() ![]() |
[21] |
H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.
doi: 10.1006/aima.2000.1937.![]() ![]() ![]() |
[22] |
O. A. Ladyzhenskaya, On some nonlinear problems in the theory of continuous media, Am. Math. Soc. Transl., 70 (1968), 73-89.
![]() |
[23] |
O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, New York: Gordon and Breach, 1969.
![]() ![]() |
[24] |
J. Leray, Essai sur les mouvements plans d'un liquide visqueux que limitent des parois, J. Math. Pure Appl., 13 (1934), 331-418.
![]() |
[25] |
D. Li, Q. Liu and X. Ju, Uniform decay estimates for solutions of a class of retarded integral inequalities, J. Differential Equations, 271 (2021), 1-38.
doi: 10.1016/j.jde.2020.08.017.![]() ![]() ![]() |
[26] |
L. Li, X.-G. Yang, X. Li, X. Yan and Y. Lu, Dynamics and stability of the 3D Brinkman-Forchheimer equation with variable delay (Ⅰ), Asymptot. Anal., 113 (2019), 167-194.
doi: 10.3233/ASY-181512.![]() ![]() ![]() |
[27] |
J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.
![]() ![]() |
[28] |
J.-L. Lions and G. Prodi, Une théorème d'existence et unicité dans les équations de Navier-Stokes en dimension 2, C. R. Acad. Sci. Paris, 248 (1959), 3519-3521.
![]() ![]() |
[29] |
P. L. Lions, Mathematical Topics in Fluid Dynamics, Vol. 1, Incompressible Models, Oxford Science Publication, Oxford, 1996.
![]() ![]() |
[30] |
L. Liu, T. Caraballo and P. Marín-Rubio, Stability results for 2D Navier-Stokes equations with unbounded delay, J. Differential Equations, 265 (2018), 5685-5708.
doi: 10.1016/j.jde.2018.07.008.![]() ![]() ![]() |
[31] |
P. Marín-Rubio, A. Márquez-Durán and J. Real, Pullback attractors for globally modified Navier-Stokes equations with infinite delays, Disc. Contin. Dyn. Syst., 31 (2011), 779-796.
doi: 10.3934/dcds.2011.31.779.![]() ![]() ![]() |
[32] |
G. Planas and E. Hernández, Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations, Disc. Contin. Dyn. Syst., 21 (2008), 1245-1258.
doi: 10.3934/dcds.2008.21.1245.![]() ![]() ![]() |
[33] |
R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Revised edition, North Holland Publishing Company-Amsterdam, New York, 1979.
![]() ![]() |
[34] |
R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2$^{nd}$ edition, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3.![]() ![]() ![]() |
[35] |
B. Wang and B. Guo, Asymptotic behavior of non-autonomous stochastic parabolic equations with nonlinear Laplacian principal part, Electron. J. Differential Equations, (2013), No. 191, 25 pp.
![]() ![]() |
[36] |
J. Wang, C. Zhao and T. Caraballo, Invariant measures for the 3D globally modified Navier-Stokes equations with unbounded variable delays, Comm. Nonl. Sci. Numer. Simul., 91 (2020), 105459, 14 pp.
doi: 10.1016/j.cnsns.2020.105459.![]() ![]() ![]() |
[37] |
X.-G. Yang, B. Feng, S. Wang, Y. Lu and T. F. Ma, Pullback dynamics of 3D Navier-Stokes equations with nonlinear viscosity, Nonlinear Anal. RWA, 48 (2019), 337-361.
doi: 10.1016/j.nonrwa.2019.01.013.![]() ![]() ![]() |
[38] |
X.-G. Yang, B. Guo, C. Guo and D. Li, The fractal dimension of pullback attractors for the 2D Navier-Stokes equations with delay, Math. Meth. Appl. Sci., 43 (2020), 9637-9653.
doi: 10.1002/mma.6634.![]() ![]() ![]() |
[39] |
X.-G. Yang, L. Li, X. Yan and L. Ding, The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay, Electron. Res. Arch., 28 (2020), 1395-1418.
doi: 10.3934/era.2020074.![]() ![]() ![]() |
[40] |
X.-G. Yang, R.-N. Wang, X. Yan and A. Miranville, Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domain, Disc. Contin. Dyn. Syst., 41 (2021), 3343-3366.
doi: 10.3934/dcds.2020408.![]() ![]() ![]() |
[41] |
S. Zheng, Nonlinear Evolution Equations, Monographs and Surveys in Pure and Applied Mathematics, 2004.
doi: 10.1201/9780203492222.![]() ![]() ![]() |