We prove a stability result in the hybrid inverse problem of recovering the electrical conductivity from partial knowledge of one current density field generated inside a body by an imposed boundary voltage. The region of stable reconstruction is well defined by a combination of the exact and perturbed data. This work explains the high resolution and accuracy reconstructions in some existing numerical experiments that use partial interior data.
Citation: |
Figure 4.
We illustrate how we can controlled the visible region and the projection of the current density. The underlying idea is to chose voltages potential
[1] |
G. Alessandrini, Critical points of solutions of elliptic equations in two variables, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 14 (1987), 229-256.
![]() ![]() |
[2] |
G. Alessandrini, Global stability for a coupled physics inverse problem, Inverse Problems, 30
(2014), 075008, 10pp.
doi: 10.1088/0266-5611/30/7/075008.![]() ![]() ![]() |
[3] |
G. Bal, Hybrid inverse problems and internal functionals, Inverse problems and applications:
Inside out. II, 325-368, Math. Sci. Res. Inst. Publ., 60, Cambridge Univ. Press, Cambridge,
2013
![]() ![]() |
[4] |
G. Bal, Hybrid inverse problems and redundant systems of partial differential equations,
Inverse Problems and Applications, 15-47, Contemp. Math., 615, Amer. Math. Soc., Providence, RI, 2014.
doi: 10.1090/conm/615/12289.![]() ![]() ![]() |
[5] |
G. Bal, E. Bonnetier, F. Monard and F. Triki, Inverse diffusion from knowledge of power densities, Inverse Problems and Imaging, 7 (2013), 353-375.
doi: 10.3934/ipi.2013.7.353.![]() ![]() ![]() |
[6] |
G. Bal, C. Guo and F. Monard, Inverse anisotropic conductivity from internal current densities Inverse Problems, 30 (2014), 025001, 21pp.
doi: 10.1088/0266-5611/30/2/025001.![]() ![]() ![]() |
[7] |
Y. Capdeboscq, J. Fehrenbach, F. De Gournay and O. Kavian, Imaging by modification: numerical reconstruction of local conductivities from corresponding power density measurements, SIAM Journal on Imaging Sciences, 2 (2009), 1003-1030.
doi: 10.1137/080723521.![]() ![]() ![]() |
[8] |
B. Gebauer and O. Scherzer, Impedance-acoustic tomography, SIAM J. Appl. Math., 69 (2008), 565-576.
doi: 10.1137/080715123.![]() ![]() ![]() |
[9] |
D. Gilbarg and N. S. Trudinger,
Elliptic Partial Differential Equations of Second Order, Springer, 2001.
![]() ![]() |
[10] |
K. Hasanov, A. Ma, R. Yoon, A. Nachman and M. Joy, A new approach to current density
impedance imaging, Engineering in Medicine and Biology Society, IEMBS '04. 26th Annual
International Conference of the IEEE, 1 (2004), 1321-1324.
doi: 10.1109/IEMBS.2004.1403415.![]() ![]() |
[11] |
N. Honda, J. McLaughlin and G. Nakamura, Conditional stability for single interior measurement Inverse Problems, 30 (2014), 055001, 19pp.
doi: 10.1088/0266-5611/30/5/055001.![]() ![]() ![]() |
[12] |
S. Kim, O. Kwon, J. K. Seo and J.-R. Yoon, On a nonlinear partial differential equation arising in magnetic resonance electrical impedance tomography, SIAM journal on Mathematical Analysis, 34 (2002), 511-526.
doi: 10.1137/S0036141001391354.![]() ![]() ![]() |
[13] |
Y. -J. Kim and M. -G. Lee, Well-posedness of the conductivity reconstruction from an interior
current density in terms of Schauder theory, Quart. Appl. Math., 73 (2015), 419-433.
doi: 10.1090/qam/1368.![]() ![]() ![]() |
[14] |
Kuchment and D. Steinhauer, Stabilizing inverse problems by internal data Inverse Problems, 28 (2012), 084007, 20pp.
doi: 10.1088/0266-5611/28/8/084007.![]() ![]() ![]() |
[15] |
Kuchment and D. Steinhauer, Stabilizing inverse problems by internal data. Ⅱ: Non-local internal data and generic linearized uniqueness, Anal. Math. Phys., 5 (2015), 391-425.
doi: 10.1007/s13324-015-0104-6.![]() ![]() ![]() |
[16] |
O. Kwon, J.-Y. Lee and J.-R. Yoon, Equipotential line method for magnetic resonance electrical impedance tomography, Inverse Problems, 18 (2002), 1089-1100.
doi: 10.1088/0266-5611/18/4/310.![]() ![]() ![]() |
[17] |
J.-Y. Lee, A reconstruction formula and uniqueness of conductivity in MREIT using two internal current distributions, Inverse Problems, 20 (2004), 847-858.
doi: 10.1088/0266-5611/20/3/012.![]() ![]() ![]() |
[18] |
F. Monard and G. Bal, Inverse anisotropic diffusion from power density measurements in two dimensions Inverse Problems, 28 (2012), 084001, 20pp.
doi: 10.1088/0266-5611/28/8/084001.![]() ![]() ![]() |
[19] |
F. Monard and G. Bal, Inverse anisotropic conductivity from power densities in dimension $n≥q3$, Comm. Partial Differential Equations, 38 (2013), 1183-1207.
doi: 10.1080/03605302.2013.787089.![]() ![]() ![]() |
[20] |
C. Montalto and Stefanov, Stability of coupled-physics inverse problems with one internal measurement Inverse Problems, 29 (2013), 125004, 13pp.
doi: 10.1088/0266-5611/29/12/125004.![]() ![]() ![]() |
[21] |
A. Moradifam, A. Nachman and A. Tamasan, Uniqueness of minimizers of weighted least gradient problems arising in conductivity imaging, preprint, 2014.
![]() |
[22] |
A. Nachman, A. Tamasan and A. Timonov, Conductivity imaging with a single measurement of boundary and interior data, Inverse Problems, 23 (2007), 2551-2563.
doi: 10.1088/0266-5611/23/6/017.![]() ![]() ![]() |
[23] |
A. Nachman, A. Tamasan and A. Timonov, Recovering the conductivity from a single measurement of interior data Inverse Problems 25 (2009), 035014, 16pp.
doi: 10.1088/0266-5611/25/3/035014.![]() ![]() ![]() |
[24] |
A. Nachman, A. Tamasan and A. Timonov, Reconstruction of planar conductivities in subdomains from incomplete data, SIAM J. Appl. Math., 70 (2010), 3342-3362.
doi: 10.1137/10079241X.![]() ![]() ![]() |
[25] |
A. Nachman, A. Tamasan and A. Timonov, Current density impedance imaging, Tomography
and inverse transport theory, vol. 559 of Contem Math., Amer. Math. Soc., Providence, RI,
2011,135-149.
doi: 10.1090/conm/559/11076.![]() ![]() ![]() |
[26] |
M. Z. Nashed and A. Tamasan, Structural stability in a minimizationproblem and applications to conductivity imaging, Inverse Probl. Imaging, 5 (2011), 219-236.
doi: 10.3934/ipi.2011.5.219.![]() ![]() ![]() |
[27] |
G. C. Scott, M. L. G. Joy, R. L. Armstrong and R. M. Henkelman, Measurement of nonuniform current density by magnetic resonance, IEEE Transactions on Medical Imaging, 10 (1991), 362-374.
doi: 10.1109/42.97586.![]() ![]() |
[28] |
J. K. Seo and E. J. Woo, Magnetic resonance electrical impedance tomography (MREIT), SIAM Rev., 53 (2011), 40-68.
doi: 10.1137/080742932.![]() ![]() ![]() |
[29] |
A. Tamasan and A. Timonov, Coupled physics electrical conductivity imaging, Eurasian J. Math. Com Appl., 2 (2014), 5-29.
![]() |
[30] |
A. Tamasan, A. Timonov and J. Veras, Stable reconstruction of regular 1-harmonic maps with a given trace at the boundary, Appl. Anal, 94 (2015), 1098-1115.
doi: 10.1080/00036811.2014.918260.![]() ![]() ![]() |
[31] |
H. Triebel,
Interpolation Theory, Function Spaces, Differential Operators, Johann Ambrosius Barth, Heidelberg, 2nd ed., 1995.
![]() ![]() |
[32] |
T. Widlak and O. Scherzer, Hybrid tomography for conductivity imaging Inverse Problems, 28 (2012), 084008, 28pp.
doi: 10.1088/0266-5611/28/8/084008.![]() ![]() ![]() |
[33] |
N. Zhang, Electrical impedance tomography based on current density imaging, MSc. thesis, University of Toronto, 1992.
![]() |