-
Previous Article
Optimal control of multiscale systems using reduced-order models
- JCD Home
- This Issue
-
Next Article
Reconstructing functions from random samples
Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools
1. | School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052 |
2. | School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, 2052, Australia |
3. | Department of Mathematics and Statistics, University of Victoria, P.O. Box 3060 STN CSC, Victoria, B.C., V8W 3R4 |
References:
[1] |
W. Bahsoun and S. Vaienti, Metastability of certain intermittent maps, Nonlinearity, 25 (2012), 107-124.
doi: 10.1088/0951-7715/25/1/107. |
[2] | |
[3] |
V. Baladi, Positive Transfer Operators and Decay of Correlations, vol. 16 of Advanced Series in Nonlinear Dynamics, World Scientific Publishing Co. Inc., River Edge, NJ, 2000.
doi: 10.1142/9789812813633. |
[4] |
V. Baladi, Anisotropic Sobolev spaces and dynamical transfer operators: $C^\infty$ foliations, in Algebraic and topological dynamics, vol. 385 of Contemp. Math., Amer. Math. Soc., Providence, RI, (2005), 123-135.
doi: 10.1090/conm/385/07194. |
[5] |
V. Baladi and S. Gouëzel, Good Banach spaces for piecewise hyperbolic maps via interpolation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1453-1481.
doi: 10.1016/j.anihpc.2009.01.001. |
[6] |
M. Blank, G. Keller and C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity, 15 (2002), 1905-1973.
doi: 10.1088/0951-7715/15/6/309. |
[7] |
M. Budišić, R. Mohr and I. Mezić, Applied Koopmanism, Chaos: An Interdisciplinary Journal of Nonlinear Science, 22 (2012), 047510.
doi: 10.1063/1.4772195. |
[8] |
J. Buzzi, No or infinitely many a.c.i.p. for piecewise expanding $C^r$ maps in higher dimensions, Comm. Math. Phys., 222 (2001), 495-501.
doi: 10.1007/s002200100509. |
[9] |
W. J. Cowieson, Absolutely continuous invariant measures for most piecewise smooth expanding maps, Ergodic Theory Dynam. Systems, 22 (2002), 1061-1078.
doi: 10.1017/S0143385702000627. |
[10] |
M. Dellnitz, G. Froyland and S. Sertl, On the isolated spectrum of the Perron-Frobenius operator, Nonlinearity, 13 (2000), 1171-1188.
doi: 10.1088/0951-7715/13/4/310. |
[11] |
M. Dellnitz and O. Junge, On the approximation of complicated dynamical behavior, SIAM J. Numer. Anal., 36 (1999), 491-515.
doi: 10.1137/S0036142996313002. |
[12] |
M. F. Demers and C. Liverani, Stability of statistical properties in two-dimensional piecewise hyperbolic maps, Trans. Amer. Math. Soc., 360 (2008), 4777-4814.
doi: 10.1090/S0002-9947-08-04464-4. |
[13] |
D. Dolgopyat and P. Wright, The diffusion coefficient for piecewise expanding maps of the interval with metastable states, Stoch. Dyn., 12 (2012), 1150005, 13pp.
doi: 10.1142/S0219493712003547. |
[14] |
G. Froyland, R. Murray and O. Stancevic, Spectral degeneracy and escape dynamics for intermittent maps with a hole, Nonlinearity, 24 (2011), 2435-2463.
doi: 10.1088/0951-7715/24/9/003. |
[15] |
G. Froyland, Unwrapping eigenfunctions to discover the geometry of almost-invariant sets in hyperbolic maps, Phys. D, 237 (2008), 840-853.
doi: 10.1016/j.physd.2007.11.004. |
[16] |
G. Froyland, S. Lloyd and A. Quas, A semi-invertible Oseledets theorem with applications to transfer operator cocycles, Discrete Contin. Dyn. Syst., 33 (2013), 3835-3860.
doi: 10.3934/dcds.2013.33.3835. |
[17] |
G. Froyland and K. Padberg, Almost-invariant sets and invariant manifolds-connecting probabilistic and geometric descriptions of coherent structures in flows, Phys. D, 238 (2009), 1507-1523.
doi: 10.1016/j.physd.2009.03.002. |
[18] |
G. Froyland, K. Padberg, M. England and A.-M. Treguier, Detection of coherent oceanic structures via transfer operators, Phys. Rev. Lett., 98 (2007), 224503. |
[19] |
G. Froyland and O. Stancevic, Escape rates and Perron-Frobenius operators: Open and closed dynamical systems, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 457-472.
doi: 10.3934/dcdsb.2010.14.457. |
[20] |
C. González-Tokman, B. Hunt and P. Wright, Approximating invariant densities of metastable systems, Ergodic Theory and Dynamical Systems, 31 (2011), 1345-1361.
doi: 10.1017/S0143385710000337. |
[21] |
C. González-Tokman and A. Quas, A semi-invertible operator Oseledets theorem, Ergodic Theory and Dynamical Systems, 34 (2014), 1230-1272, URL http://journals.cambridge.org/article_S0143385712001897.
doi: 10.1017/etds.2012.189. |
[22] |
P. Góra, A. Boyarsky and H. Proppe, On the number of invariant measures for higher-dimensional chaotic transformations, J. Statist. Phys., 62 (1991), 709-728.
doi: 10.1007/BF01017979. |
[23] | |
[24] |
H. Hennion, Sur un théorème spectral et son application aux noyaux lipchitziens, Proc. Amer. Math. Soc., 118 (1993), 627-634.
doi: 10.2307/2160348. |
[25] |
F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Z., 180 (1982), 119-140.
doi: 10.1007/BF01215004. |
[26] |
O. Junge, J. Marsden and I. Mezic, Uncertainty in the dynamics of conservative maps, in Decision and Control, 2004. CDC. 43rd IEEE Conference on, 2 (2004), 2225-2230.
doi: 10.1109/CDC.2004.1430379. |
[27] |
T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math., 6 (1958), 261-322.
doi: 10.1007/BF02790238. |
[28] |
T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995, Reprint of the 1980 edition. |
[29] |
G. Keller, On the rate of convergence to equilibrium in one-dimensional systems, Comm. Math. Phys., 96 (1984), 181-193, URL http://projecteuclid.org/getRecord?id=euclid.cmp/1103941781.
doi: 10.1007/BF01240219. |
[30] |
G. Keller and C. Liverani, Stability of the spectrum for transfer operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 141-152, URL http://www.numdam.org/item?id=ASNSP_1999_4_28_1_141_0. |
[31] |
G. Keller and C. Liverani, Rare events, escape rates and quasistationarity: Some exact formulae, J. Stat. Phys., 135 (2009), 519-534.
doi: 10.1007/s10955-009-9747-8. |
[32] |
G. Keller and H. H. Rugh, Eigenfunctions for smooth expanding circle maps, Nonlinearity, 17 (2004), 1723-1730.
doi: 10.1088/0951-7715/17/5/009. |
[33] |
Z. Levnajić and I. Mezić, Ergodic theory and visualization. i. mesochronic plots for visualization of ergodic partition and invariant sets, Chaos: An Interdisciplinary Journal of Nonlinear Science, 20 (2010), 033114, 19pp.
doi: 10.1063/1.3458896. |
[34] |
G. Mathew, I. Mezić and L. Petzold, A multiscale measure for mixing, Phys. D, 211 (2005), 23-46.
doi: 10.1016/j.physd.2005.07.017. |
[35] |
I. Mezić and A. Banaszuk, Comparison of systems with complex behavior, Physica D: Nonlinear Phenomena, 197 (2004), 101-133, URL http://www.sciencedirect.com/science/article/pii/S0167278904002507.
doi: 10.1016/j.physd.2004.06.015. |
[36] |
M. Rychlik, Bounded variation and invariant measures, Studia Math., 76 (1983), 69-80. |
[37] |
B. Saussol, Absolutely continuous invariant measures for multidimensional expanding maps, Israel J. Math., 116 (2000), 223-248.
doi: 10.1007/BF02773219. |
[38] |
C. Schütte, A. Fischer, W. Huisinga and P. Deuflhard, A direct approach to conformational dynamics based on hybrid Monte Carlo, J. Comput. Phys., 151 (1999), 146-168, Computational molecular biophysics.
doi: 10.1006/jcph.1999.6231. |
[39] |
R. S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech., 16 (1967), 1031-1060. |
[40] |
J.-L. Thiffeault, Using multiscale norms to quantify mixing and transport, Nonlinearity, 25 (2012), R1-R44.
doi: 10.1088/0951-7715/25/2/R1. |
[41] |
M. Tsujii, Piecewise expanding maps on the plane with singular ergodic properties, Ergodic Theory Dynam. Systems, 20 (2000), 1851-1857.
doi: 10.1017/S0143385700001012. |
[42] |
S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York-London, 1960. |
show all references
References:
[1] |
W. Bahsoun and S. Vaienti, Metastability of certain intermittent maps, Nonlinearity, 25 (2012), 107-124.
doi: 10.1088/0951-7715/25/1/107. |
[2] | |
[3] |
V. Baladi, Positive Transfer Operators and Decay of Correlations, vol. 16 of Advanced Series in Nonlinear Dynamics, World Scientific Publishing Co. Inc., River Edge, NJ, 2000.
doi: 10.1142/9789812813633. |
[4] |
V. Baladi, Anisotropic Sobolev spaces and dynamical transfer operators: $C^\infty$ foliations, in Algebraic and topological dynamics, vol. 385 of Contemp. Math., Amer. Math. Soc., Providence, RI, (2005), 123-135.
doi: 10.1090/conm/385/07194. |
[5] |
V. Baladi and S. Gouëzel, Good Banach spaces for piecewise hyperbolic maps via interpolation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1453-1481.
doi: 10.1016/j.anihpc.2009.01.001. |
[6] |
M. Blank, G. Keller and C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity, 15 (2002), 1905-1973.
doi: 10.1088/0951-7715/15/6/309. |
[7] |
M. Budišić, R. Mohr and I. Mezić, Applied Koopmanism, Chaos: An Interdisciplinary Journal of Nonlinear Science, 22 (2012), 047510.
doi: 10.1063/1.4772195. |
[8] |
J. Buzzi, No or infinitely many a.c.i.p. for piecewise expanding $C^r$ maps in higher dimensions, Comm. Math. Phys., 222 (2001), 495-501.
doi: 10.1007/s002200100509. |
[9] |
W. J. Cowieson, Absolutely continuous invariant measures for most piecewise smooth expanding maps, Ergodic Theory Dynam. Systems, 22 (2002), 1061-1078.
doi: 10.1017/S0143385702000627. |
[10] |
M. Dellnitz, G. Froyland and S. Sertl, On the isolated spectrum of the Perron-Frobenius operator, Nonlinearity, 13 (2000), 1171-1188.
doi: 10.1088/0951-7715/13/4/310. |
[11] |
M. Dellnitz and O. Junge, On the approximation of complicated dynamical behavior, SIAM J. Numer. Anal., 36 (1999), 491-515.
doi: 10.1137/S0036142996313002. |
[12] |
M. F. Demers and C. Liverani, Stability of statistical properties in two-dimensional piecewise hyperbolic maps, Trans. Amer. Math. Soc., 360 (2008), 4777-4814.
doi: 10.1090/S0002-9947-08-04464-4. |
[13] |
D. Dolgopyat and P. Wright, The diffusion coefficient for piecewise expanding maps of the interval with metastable states, Stoch. Dyn., 12 (2012), 1150005, 13pp.
doi: 10.1142/S0219493712003547. |
[14] |
G. Froyland, R. Murray and O. Stancevic, Spectral degeneracy and escape dynamics for intermittent maps with a hole, Nonlinearity, 24 (2011), 2435-2463.
doi: 10.1088/0951-7715/24/9/003. |
[15] |
G. Froyland, Unwrapping eigenfunctions to discover the geometry of almost-invariant sets in hyperbolic maps, Phys. D, 237 (2008), 840-853.
doi: 10.1016/j.physd.2007.11.004. |
[16] |
G. Froyland, S. Lloyd and A. Quas, A semi-invertible Oseledets theorem with applications to transfer operator cocycles, Discrete Contin. Dyn. Syst., 33 (2013), 3835-3860.
doi: 10.3934/dcds.2013.33.3835. |
[17] |
G. Froyland and K. Padberg, Almost-invariant sets and invariant manifolds-connecting probabilistic and geometric descriptions of coherent structures in flows, Phys. D, 238 (2009), 1507-1523.
doi: 10.1016/j.physd.2009.03.002. |
[18] |
G. Froyland, K. Padberg, M. England and A.-M. Treguier, Detection of coherent oceanic structures via transfer operators, Phys. Rev. Lett., 98 (2007), 224503. |
[19] |
G. Froyland and O. Stancevic, Escape rates and Perron-Frobenius operators: Open and closed dynamical systems, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 457-472.
doi: 10.3934/dcdsb.2010.14.457. |
[20] |
C. González-Tokman, B. Hunt and P. Wright, Approximating invariant densities of metastable systems, Ergodic Theory and Dynamical Systems, 31 (2011), 1345-1361.
doi: 10.1017/S0143385710000337. |
[21] |
C. González-Tokman and A. Quas, A semi-invertible operator Oseledets theorem, Ergodic Theory and Dynamical Systems, 34 (2014), 1230-1272, URL http://journals.cambridge.org/article_S0143385712001897.
doi: 10.1017/etds.2012.189. |
[22] |
P. Góra, A. Boyarsky and H. Proppe, On the number of invariant measures for higher-dimensional chaotic transformations, J. Statist. Phys., 62 (1991), 709-728.
doi: 10.1007/BF01017979. |
[23] | |
[24] |
H. Hennion, Sur un théorème spectral et son application aux noyaux lipchitziens, Proc. Amer. Math. Soc., 118 (1993), 627-634.
doi: 10.2307/2160348. |
[25] |
F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Z., 180 (1982), 119-140.
doi: 10.1007/BF01215004. |
[26] |
O. Junge, J. Marsden and I. Mezic, Uncertainty in the dynamics of conservative maps, in Decision and Control, 2004. CDC. 43rd IEEE Conference on, 2 (2004), 2225-2230.
doi: 10.1109/CDC.2004.1430379. |
[27] |
T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math., 6 (1958), 261-322.
doi: 10.1007/BF02790238. |
[28] |
T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995, Reprint of the 1980 edition. |
[29] |
G. Keller, On the rate of convergence to equilibrium in one-dimensional systems, Comm. Math. Phys., 96 (1984), 181-193, URL http://projecteuclid.org/getRecord?id=euclid.cmp/1103941781.
doi: 10.1007/BF01240219. |
[30] |
G. Keller and C. Liverani, Stability of the spectrum for transfer operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 141-152, URL http://www.numdam.org/item?id=ASNSP_1999_4_28_1_141_0. |
[31] |
G. Keller and C. Liverani, Rare events, escape rates and quasistationarity: Some exact formulae, J. Stat. Phys., 135 (2009), 519-534.
doi: 10.1007/s10955-009-9747-8. |
[32] |
G. Keller and H. H. Rugh, Eigenfunctions for smooth expanding circle maps, Nonlinearity, 17 (2004), 1723-1730.
doi: 10.1088/0951-7715/17/5/009. |
[33] |
Z. Levnajić and I. Mezić, Ergodic theory and visualization. i. mesochronic plots for visualization of ergodic partition and invariant sets, Chaos: An Interdisciplinary Journal of Nonlinear Science, 20 (2010), 033114, 19pp.
doi: 10.1063/1.3458896. |
[34] |
G. Mathew, I. Mezić and L. Petzold, A multiscale measure for mixing, Phys. D, 211 (2005), 23-46.
doi: 10.1016/j.physd.2005.07.017. |
[35] |
I. Mezić and A. Banaszuk, Comparison of systems with complex behavior, Physica D: Nonlinear Phenomena, 197 (2004), 101-133, URL http://www.sciencedirect.com/science/article/pii/S0167278904002507.
doi: 10.1016/j.physd.2004.06.015. |
[36] |
M. Rychlik, Bounded variation and invariant measures, Studia Math., 76 (1983), 69-80. |
[37] |
B. Saussol, Absolutely continuous invariant measures for multidimensional expanding maps, Israel J. Math., 116 (2000), 223-248.
doi: 10.1007/BF02773219. |
[38] |
C. Schütte, A. Fischer, W. Huisinga and P. Deuflhard, A direct approach to conformational dynamics based on hybrid Monte Carlo, J. Comput. Phys., 151 (1999), 146-168, Computational molecular biophysics.
doi: 10.1006/jcph.1999.6231. |
[39] |
R. S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech., 16 (1967), 1031-1060. |
[40] |
J.-L. Thiffeault, Using multiscale norms to quantify mixing and transport, Nonlinearity, 25 (2012), R1-R44.
doi: 10.1088/0951-7715/25/2/R1. |
[41] |
M. Tsujii, Piecewise expanding maps on the plane with singular ergodic properties, Ergodic Theory Dynam. Systems, 20 (2000), 1851-1857.
doi: 10.1017/S0143385700001012. |
[42] |
S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York-London, 1960. |
[1] |
Frédéric Naud. The Ruelle spectrum of generic transfer operators. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2521-2531. doi: 10.3934/dcds.2012.32.2521 |
[2] |
Frédéric Naud. Birkhoff cones, symbolic dynamics and spectrum of transfer operators. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 581-598. doi: 10.3934/dcds.2004.11.581 |
[3] |
Gary Froyland. On Ulam approximation of the isolated spectrum and eigenfunctions of hyperbolic maps. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 671-689. doi: 10.3934/dcds.2007.17.671 |
[4] |
Christopher Bose, Rua Murray. The exact rate of approximation in Ulam's method. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 219-235. doi: 10.3934/dcds.2001.7.219 |
[5] |
Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 917-944. doi: 10.3934/dcds.2011.30.917 |
[6] |
Vesselin Petkov, Luchezar Stoyanov. Ruelle transfer operators with two complex parameters and applications. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6413-6451. doi: 10.3934/dcds.2016077 |
[7] |
Alexei A. Ilyin. Lower bounds for the spectrum of the Laplace and Stokes operators. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 131-146. doi: 10.3934/dcds.2010.28.131 |
[8] |
Dmitry Jakobson, Alexander Strohmaier, Steve Zelditch. On the spectrum of geometric operators on Kähler manifolds. Journal of Modern Dynamics, 2008, 2 (4) : 701-718. doi: 10.3934/jmd.2008.2.701 |
[9] |
Rua Murray. Ulam's method for some non-uniformly expanding maps. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 1007-1018. doi: 10.3934/dcds.2010.26.1007 |
[10] |
Paweł Góra, Abraham Boyarsky. Stochastic perturbations and Ulam's method for W-shaped maps. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1937-1944. doi: 10.3934/dcds.2013.33.1937 |
[11] |
Pablo Blanc, Juan J. Manfredi, Julio D. Rossi. Games for Pucci's maximal operators. Journal of Dynamics and Games, 2019, 6 (4) : 277-289. doi: 10.3934/jdg.2019019 |
[12] |
Doug Hensley. Continued fractions, Cantor sets, Hausdorff dimension, and transfer operators and their analytic extension. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2417-2436. doi: 10.3934/dcds.2012.32.2417 |
[13] |
Gang Cai, Yekini Shehu, Olaniyi S. Iyiola. Inertial Tseng's extragradient method for solving variational inequality problems of pseudo-monotone and non-Lipschitz operators. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2873-2902. doi: 10.3934/jimo.2021095 |
[14] |
Wenxian Shen, Xiaoxia Xie. On principal spectrum points/principal eigenvalues of nonlocal dispersal operators and applications. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1665-1696. doi: 10.3934/dcds.2015.35.1665 |
[15] |
Katsukuni Nakagawa. Compactness of transfer operators and spectral representation of Ruelle zeta functions for super-continuous functions. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6331-6350. doi: 10.3934/dcds.2020282 |
[16] |
Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004 |
[17] |
Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1871-1897. doi: 10.3934/dcdss.2020462 |
[18] |
Chantelle Blachut, Cecilia González-Tokman. A tale of two vortices: How numerical ergodic theory and transfer operators reveal fundamental changes to coherent structures in non-autonomous dynamical systems. Journal of Computational Dynamics, 2020, 7 (2) : 369-399. doi: 10.3934/jcd.2020015 |
[19] |
Matthew O. Williams, Clarence W. Rowley, Ioannis G. Kevrekidis. A kernel-based method for data-driven koopman spectral analysis. Journal of Computational Dynamics, 2015, 2 (2) : 247-265. doi: 10.3934/jcd.2015005 |
[20] |
Jon Johnsen. Well-posed final value problems and Duhamel's formula for coercive Lax–Milgram operators. Electronic Research Archive, 2019, 27: 20-36. doi: 10.3934/era.2019008 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]