- Previous Article
- JCD Home
- This Issue
-
Next Article
Attraction-based computation of hyperbolic Lagrangian coherent structures
Steady state bifurcations for the Kuramoto-Sivashinsky equation: A computer assisted proof
1. | Institute of Computer Science, Jagiellonian University, Lojasiewicza 6, 30-348 Kraków, Poland |
References:
[1] |
G. Arioli and H. Koch, Computer-assisted methods for the study of stationary solutions in dissipative systems, applied to the Kuramoto-Sivashinski equation, Arch. Rational Mech. An., 197 (2010), 1033-1051.
doi: 10.1007/s00205-010-0309-7. |
[2] |
, CAPD - Computer assisted proofs in dynamics, a package for rigorous numerics, Available from: http://capd.ii.uj.edu.pl |
[3] |
L. Cesari, Functional analysis and Galerkin's method, Mich. Math. Jour., 11 (1964), 385-414.
doi: 10.1307/mmj/1028999194. |
[4] |
S.-N. Chow and J. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, 1982. |
[5] |
F. Christiansen, P. Cvitanovic and V. Putkaradze, Spatiotemporal chaos in terms of unstable recurrent patterns, Nonlinearity, 10 (1997), 55-70.
doi: 10.1088/0951-7715/10/1/004. |
[6] |
P. Collet, J.-P. Eckmann, H. Epstein and J. Stubbe, Analyticity for the Kuramoto-Sivashinsky equation, Physica D, 67 (1993), 321-326.
doi: 10.1016/0167-2789(93)90168-Z. |
[7] |
E. J. Doedel, AUTO: a program for the bifurcation analysis of autonomous system, Congr. Numer., 30 (1981), 265-284. |
[8] |
E. J. Doedel and R. C. Paffenroth, The AUTO2000: command line user interface, in Proceedings of the 9-th Python Conference, 2001, 233-241. |
[9] |
C. Foias, B. Nicolaenko, G. Sell and R. Temam, Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension, J. Math. Pures Appl., 67 (1988), 197-226. |
[10] |
J. Hyman and B. Nicolaenko, The Kuramoto-Sivashinsky equation; A bridge between PDEs and dynamical systems, Physica D, 18 (1986), 113-126.
doi: 10.1016/0167-2789(86)90166-1. |
[11] |
J. S. Il'yashenko, Global Analysis of the Phase Portrait for the Kuramoto-Sivashinsky equation, J. Dyn. Diff. Eq., 4 (1992), 585-615.
doi: 10.1007/BF01048261. |
[12] |
M. Jolly, I. Kevrekidis and E. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations, Physica D, 44 (1990), 38-60.
doi: 10.1016/0167-2789(90)90046-R. |
[13] |
M. Jolly, R. Rosa and R. Temam, Evaluating the dimension of an inertial manifold for the Kuramoto-Sivashinsky Equation, Adv. Differential Equations, 5 (2000), 31-66. |
[14] |
M. Jolly, R. Rosa and R. Temam, Acurate computations on inertial manifolds, SIAM J. Sci. Compt., 22 (2000), 2216-2238.
doi: 10.1137/S1064827599351738. |
[15] |
I. Kevrekidis, B. Nicolaenko and C. Scovel, Back in saddle again: a computer assisted study of the Kuramoto-Sivashinsky equation, SIAM J. Appl. Math., 50 (1990), 760-790.
doi: 10.1137/0150045. |
[16] |
Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55 (1976), 356-369.
doi: 10.1143/PTP.55.356. |
[17] |
S. Maier-Paape, U. Miller, K. Mischaikow and T. Wanner, Rigorous numerics for the Cahn-Hilliard equation on the unit square, Revista Matematica Complutense, 21 (2008), 351-426.
doi: 10.5209/rev_REMA.2008.v21.n2.16380. |
[18] |
R. E. Moore, Interval Analysis, Prentice Hall, Englewood Cliffs, N.J., 1966. |
[19] |
A. Neumeier, Interval Methods for Systems of Equations, Cambrigde University Press, 1990. |
[20] |
A. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics, Texts in Applied Mathematics, 37. Springer-Verlag, New York, 2000. |
[21] |
G. I. Sivashinsky, Nonlinear analysis of hydrodynamical instability in laminar flames - 1. Derivation of basic equations, Acta Astron, 4 (1977), 1177-1206.
doi: 10.1016/0094-5765(77)90096-0. |
[22] |
C. Scovel, I. Kevrekidis and B. Nicolaenko, Scaling laws and the prediction of bifurcations in systems modeling pattern formation, Physics Letters A, 130 (1988), 73-80.
doi: 10.1016/0375-9601(88)90242-3. |
[23] |
P. Zgliczyński and K. Mischaikow, Rigorous numerics for partial differential equations: The Kuramoto-Sivashinsky equation, Foundations of Computational Mathematics, 1 (2001), 255-288.
doi: 10.1007/s002080010010. |
[24] |
P. Zgliczyński, Trapping regions and an ODE-type proof of existence and uniqueness for Navier-Stokes equations with periodic boundary conditions on the plane, Univ. Iag. Acta Math., 41 (2003), 89-113. |
[25] |
P. Zgliczyński, On smooth dependence on initial conditions for dissipative PDEs, an ODE-type approach, J. Diff. Eq., 195 (2003), 271-283.
doi: 10.1016/j.jde.2003.07.009. |
[26] |
P. Zgliczyński, Attracting fixed points for the Kuramoto-Sivashinsky equation - a computer assisted proof, SIAM Journal on Applied Dynamical Systems, 1 (2002), 215-235.
doi: 10.1137/S111111110240176X. |
[27] |
, the file containing numerical data from the bifurcation proofs, Available from: http://www.ii.uj.edu.pl/ zgliczyn/papers/ks/bifdata.txt. |
show all references
References:
[1] |
G. Arioli and H. Koch, Computer-assisted methods for the study of stationary solutions in dissipative systems, applied to the Kuramoto-Sivashinski equation, Arch. Rational Mech. An., 197 (2010), 1033-1051.
doi: 10.1007/s00205-010-0309-7. |
[2] |
, CAPD - Computer assisted proofs in dynamics, a package for rigorous numerics, Available from: http://capd.ii.uj.edu.pl |
[3] |
L. Cesari, Functional analysis and Galerkin's method, Mich. Math. Jour., 11 (1964), 385-414.
doi: 10.1307/mmj/1028999194. |
[4] |
S.-N. Chow and J. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, 1982. |
[5] |
F. Christiansen, P. Cvitanovic and V. Putkaradze, Spatiotemporal chaos in terms of unstable recurrent patterns, Nonlinearity, 10 (1997), 55-70.
doi: 10.1088/0951-7715/10/1/004. |
[6] |
P. Collet, J.-P. Eckmann, H. Epstein and J. Stubbe, Analyticity for the Kuramoto-Sivashinsky equation, Physica D, 67 (1993), 321-326.
doi: 10.1016/0167-2789(93)90168-Z. |
[7] |
E. J. Doedel, AUTO: a program for the bifurcation analysis of autonomous system, Congr. Numer., 30 (1981), 265-284. |
[8] |
E. J. Doedel and R. C. Paffenroth, The AUTO2000: command line user interface, in Proceedings of the 9-th Python Conference, 2001, 233-241. |
[9] |
C. Foias, B. Nicolaenko, G. Sell and R. Temam, Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension, J. Math. Pures Appl., 67 (1988), 197-226. |
[10] |
J. Hyman and B. Nicolaenko, The Kuramoto-Sivashinsky equation; A bridge between PDEs and dynamical systems, Physica D, 18 (1986), 113-126.
doi: 10.1016/0167-2789(86)90166-1. |
[11] |
J. S. Il'yashenko, Global Analysis of the Phase Portrait for the Kuramoto-Sivashinsky equation, J. Dyn. Diff. Eq., 4 (1992), 585-615.
doi: 10.1007/BF01048261. |
[12] |
M. Jolly, I. Kevrekidis and E. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations, Physica D, 44 (1990), 38-60.
doi: 10.1016/0167-2789(90)90046-R. |
[13] |
M. Jolly, R. Rosa and R. Temam, Evaluating the dimension of an inertial manifold for the Kuramoto-Sivashinsky Equation, Adv. Differential Equations, 5 (2000), 31-66. |
[14] |
M. Jolly, R. Rosa and R. Temam, Acurate computations on inertial manifolds, SIAM J. Sci. Compt., 22 (2000), 2216-2238.
doi: 10.1137/S1064827599351738. |
[15] |
I. Kevrekidis, B. Nicolaenko and C. Scovel, Back in saddle again: a computer assisted study of the Kuramoto-Sivashinsky equation, SIAM J. Appl. Math., 50 (1990), 760-790.
doi: 10.1137/0150045. |
[16] |
Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55 (1976), 356-369.
doi: 10.1143/PTP.55.356. |
[17] |
S. Maier-Paape, U. Miller, K. Mischaikow and T. Wanner, Rigorous numerics for the Cahn-Hilliard equation on the unit square, Revista Matematica Complutense, 21 (2008), 351-426.
doi: 10.5209/rev_REMA.2008.v21.n2.16380. |
[18] |
R. E. Moore, Interval Analysis, Prentice Hall, Englewood Cliffs, N.J., 1966. |
[19] |
A. Neumeier, Interval Methods for Systems of Equations, Cambrigde University Press, 1990. |
[20] |
A. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics, Texts in Applied Mathematics, 37. Springer-Verlag, New York, 2000. |
[21] |
G. I. Sivashinsky, Nonlinear analysis of hydrodynamical instability in laminar flames - 1. Derivation of basic equations, Acta Astron, 4 (1977), 1177-1206.
doi: 10.1016/0094-5765(77)90096-0. |
[22] |
C. Scovel, I. Kevrekidis and B. Nicolaenko, Scaling laws and the prediction of bifurcations in systems modeling pattern formation, Physics Letters A, 130 (1988), 73-80.
doi: 10.1016/0375-9601(88)90242-3. |
[23] |
P. Zgliczyński and K. Mischaikow, Rigorous numerics for partial differential equations: The Kuramoto-Sivashinsky equation, Foundations of Computational Mathematics, 1 (2001), 255-288.
doi: 10.1007/s002080010010. |
[24] |
P. Zgliczyński, Trapping regions and an ODE-type proof of existence and uniqueness for Navier-Stokes equations with periodic boundary conditions on the plane, Univ. Iag. Acta Math., 41 (2003), 89-113. |
[25] |
P. Zgliczyński, On smooth dependence on initial conditions for dissipative PDEs, an ODE-type approach, J. Diff. Eq., 195 (2003), 271-283.
doi: 10.1016/j.jde.2003.07.009. |
[26] |
P. Zgliczyński, Attracting fixed points for the Kuramoto-Sivashinsky equation - a computer assisted proof, SIAM Journal on Applied Dynamical Systems, 1 (2002), 215-235.
doi: 10.1137/S111111110240176X. |
[27] |
, the file containing numerical data from the bifurcation proofs, Available from: http://www.ii.uj.edu.pl/ zgliczyn/papers/ks/bifdata.txt. |
[1] |
Maxime Breden, Laurent Desvillettes, Jean-Philippe Lessard. Rigorous numerics for nonlinear operators with tridiagonal dominant linear part. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4765-4789. doi: 10.3934/dcds.2015.35.4765 |
[2] |
Jan Bouwe van den Berg, Ray Sheombarsing. Rigorous numerics for ODEs using Chebyshev series and domain decomposition. Journal of Computational Dynamics, 2021, 8 (3) : 353-401. doi: 10.3934/jcd.2021015 |
[3] |
Sergey Zelik. Strong uniform attractors for non-autonomous dissipative PDEs with non translation-compact external forces. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 781-810. doi: 10.3934/dcdsb.2015.20.781 |
[4] |
José A. Carrillo, Bertram Düring, Lisa Maria Kreusser, Carola-Bibiane Schönlieb. Equilibria of an anisotropic nonlocal interaction equation: Analysis and numerics. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3985-4012. doi: 10.3934/dcds.2021025 |
[5] |
Luiz Henrique de Figueiredo, Diego Nehab, Jorge Stolfi, João Batista S. de Oliveira. Rigorous bounds for polynomial Julia sets. Journal of Computational Dynamics, 2016, 3 (2) : 113-137. doi: 10.3934/jcd.2016006 |
[6] |
J. P. Lessard, J. D. Mireles James. A functional analytic approach to validated numerics for eigenvalues of delay equations. Journal of Computational Dynamics, 2020, 7 (1) : 123-158. doi: 10.3934/jcd.2020005 |
[7] |
Timothy J. Healey. A rigorous derivation of hemitropy in nonlinearly elastic rods. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 265-282. doi: 10.3934/dcdsb.2011.16.265 |
[8] |
Jean-Philippe Lessard, Evelyn Sander, Thomas Wanner. Rigorous continuation of bifurcation points in the diblock copolymer equation. Journal of Computational Dynamics, 2017, 4 (1&2) : 71-118. doi: 10.3934/jcd.2017003 |
[9] |
Kay Kirkpatrick. Rigorous derivation of the Landau equation in the weak coupling limit. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1895-1916. doi: 10.3934/cpaa.2009.8.1895 |
[10] |
V. Afraimovich, J.-R. Chazottes, A. Cordonet. Synchronization in directionally coupled systems: Some rigorous results. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 421-442. doi: 10.3934/dcdsb.2001.1.421 |
[11] |
Anna Belova. Rigorous enclosures of rotation numbers by interval methods. Journal of Computational Dynamics, 2016, 3 (1) : 81-91. doi: 10.3934/jcd.2016004 |
[12] |
Alexander Komech. Attractors of Hamilton nonlinear PDEs. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6201-6256. doi: 10.3934/dcds.2016071 |
[13] |
Enrico Valdinoci. Contemporary PDEs between theory and applications. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : i-i. doi: 10.3934/dcds.2015.35.12i |
[14] |
Hongyu Cheng, Rafael de la Llave. Time dependent center manifold in PDEs. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6709-6745. doi: 10.3934/dcds.2020213 |
[15] |
Raffaele Esposito, Mario Pulvirenti. Rigorous validity of the Boltzmann equation for a thin layer of a rarefied gas. Kinetic and Related Models, 2010, 3 (2) : 281-297. doi: 10.3934/krm.2010.3.281 |
[16] |
H. Merdan, G. Caginalp. Decay of solutions to nonlinear parabolic equations: renormalization and rigorous results. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 565-588. doi: 10.3934/dcdsb.2003.3.565 |
[17] |
Wayne B. Hayes, Kenneth R. Jackson, Carmen Young. Rigorous high-dimensional shadowing using containment: The general case. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 329-342. doi: 10.3934/dcds.2006.14.329 |
[18] |
Hjörtur Björnsson, Sigurdur Hafstein, Peter Giesl, Enrico Scalas, Skuli Gudmundsson. Computation of the stochastic basin of attraction by rigorous construction of a Lyapunov function. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4247-4269. doi: 10.3934/dcdsb.2019080 |
[19] |
B. Fernandez, P. Guiraud. Route to chaotic synchronisation in coupled map lattices: Rigorous results. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 435-456. doi: 10.3934/dcdsb.2004.4.435 |
[20] |
Hassan Najafi Alishah, Pedro Duarte, Telmo Peixe. Conservative and dissipative polymatrix replicators. Journal of Dynamics and Games, 2015, 2 (2) : 157-185. doi: 10.3934/jdg.2015.2.157 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]