
-
Previous Article
Bistability, bifurcations and chaos in the Mackey-Glass equation
- JCD Home
- This Issue
-
Next Article
Continuation methods for principal foliations of embedded surfaces
Determining the global manifold structure of a continuous-time heterodimensional cycle
1. | School of Mathematical Sciences, Monash University, Melbourne VIC 3800, Australia |
2. | Department of Mathematics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand |
3. | National Institute of Water and Atmospheric Research Ltd (NIWA), Private Bag 99940, Newmarket, Auckland 1149, New Zealand |
A heterodimensional cycle consists of two saddle periodic orbits with unstable manifolds of different dimensions and a pair of connecting orbits between them. Recent theoretical work on chaotic dynamics beyond the uniformly hyperbolic setting has shown that heterodimensional cycles may occur robustly in diffeomorphisms of dimension at least three. We consider the first explicit example of a heterodimensional cycle in the continuous-time setting, which has been identified by Zhang, Krauskopf and Kirk [Discr. Contin. Dynam. Syst. A 32(8) 2825-2851 (2012)] in a four-dimensional vector-field model of intracellular calcium dynamics.
We show here how a boundary-value problem set-up can be employed to determine the organization of the dynamics in a neighborhood in phase space of this heterodimensional cycle, which consists of a single connecting orbit of codimension one and an entire cylinder of structurally stable connecting orbits between two saddle periodic orbits. More specifically, we compute the relevant stable and unstable manifolds, which we visualize in different projections of phase space and as intersection sets with a suitable three-dimensional Poincaré section. In this way, we show that, locally near the intersection set of the heterodimensional cycle, the manifolds interact as described by the theory for three-dimensional diffeomorphisms. On the other hand, their global structure is more intricate, which is due to the fact that it is not possible to find a Poincaré section that is transverse to the flow everywhere. More generally, our results show that advanced numerical continuation techniques enable one to investigate how abstract concepts â€" such as that of a heterodimensional cycle of a diffeomorphism â€" arise and manifest themselves in explicit continuous-time systems from applications.
References:
[1] |
D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Inst. Steklov, 90 (1967), 209 pp. |
[2] |
A. Atri, J. Amundsen, D. Clapham and J. Sneyd,
A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte, Biophysical J., 65 (1993), 1727-1739.
doi: 10.1016/S0006-3495(93)81191-3. |
[3] |
R. Bamón, J. Kiwi and J. Rivera-Letelier, Wild Lorenz-like attractors, Preprint, 2006, arXiv: math/0508045. |
[4] |
W.-J. Beyn,
The numerical computation of connecting orbits in dynamical systems, IMA J. Numer. Anal., 10 (1990), 379-405.
doi: 10.1093/imanum/10.3.379. |
[5] |
W.-J. Beyn, On well-posed problems for connecting orbits in dynamical systems, In Chaotic Numerics, (eds. P. E. Kloeden and K. J. Palmer), Contemporary Mathematics, American Mathematical Society, Rhode Island, 172 (1994), 131-168.
doi: 10.1090/conm/172/01802. |
[6] |
G. D. Birkhoff,
Dynamical systems with two degrees of freedom, Trans. Amer. Math. Soc., 18 (1917), 199-300.
doi: 10.1090/S0002-9947-1917-1501070-3. |
[7] |
C. Bonatti and S. Crovisier,
Récurrence et généricité, Invent. Math., 158 (2004), 33-104.
doi: 10.1007/s00222-004-0368-1. |
[8] |
C. Bonatti, S. Crovisier, L. J. Díaz and A. Wilkinson,
What is $\ldots$ a blender?, Notices Amer. Math. Soc., 63 (2016), 1175-1178.
doi: 10.1090/noti1438. |
[9] |
C. Bonatti and L. J. Díaz,
Persistent nonhyperbolic transitive diffeomorphisms, Ann. of Math., 143 (1996), 357-396.
doi: 10.2307/2118647. |
[10] |
C. Bonatti and L. J. Díaz,
Robust heterodimensional cycles and $C^1$-generic consequences, J. Inst. Math. Jussieu, 7 (2008), 469-525.
doi: 10.1017/S1474748008000030. |
[11] |
C. Bonatti and L. J. Díaz,
Abundance of $C^1$-robust homoclinic tangencies, Trans. Amer. Math. Soc., 364 (2012), 5111-5148.
doi: 10.1090/S0002-9947-2012-05445-6. |
[12] |
C. Bonatti, L. J. Díaz and S. Kiriki,
Stabilization of heterodimensional cycles, Nonlinearity, 25 (2012), 931-960.
doi: 10.1088/0951-7715/25/4/931. |
[13] |
C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective, Springer-Verlag, Berlin, 2005. |
[14] |
A. R. Champneys, Y. A. Kuznetsov and B. Sandstede,
A numerical toolbox for homoclinic bifurcation analysis, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6 (1996), 867-887.
doi: 10.1142/S0218127496000485. |
[15] |
I. C. Christov, R. M. Lueptow, J. M. Ottino and R. Sturman,
A study in three-dimensional chaotic dynamics: Granular flow and transport in a bi-axial spherical tumbler, SIAM J. Appl. Dynam. Syst., 13 (2014), 901-943.
doi: 10.1137/130934076. |
[16] |
S. Crovisier and E. R. Pujals,
Essential hyperbolicity and homoclinic bifurcations: A dichotomy phenomenon/mechanism for diffeomorphisms, Invent. Math., 201 (2015), 385-517.
doi: 10.1007/s00222-014-0553-9. |
[17] |
L. J. Díaz,
Robust nonhyperbolic dynamics and heterodimensional cycles, Ergod. Theory Dyn. Syst., 15 (1995), 291-315.
doi: 10.1017/S0143385700008385. |
[18] |
L. J. Díaz, S. Kiriki and K. Shinohara,
Blenders in centre unstable Hénon-like families: With an application to heterodimensional bifurcations, Nonlinearity, 27 (2014), 353-378.
doi: 10.1088/0951-7715/27/3/353. |
[19] |
L. J. Díaz and S. A. Pérez, Hénon-like families and blender-horseshoes at nontransverse heterodimensional cycles, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1930006, 22 pp.
doi: 10.1142/S0218127419300064. |
[20] |
L. J. Díaz and S. A. Pérez, Blender-horseshoes in center-unstable Hénon-like families, In New Trends in One-Dimensional Dynamics, Springer Proc. Math., Springer, Cham, 285 (2019), 137-163.
doi: 10.1007/978-3-030-16833-9_8. |
[21] |
L. J. Díaz and S. A. Pérez, Nontransverse heterodimensional cycles: Stabilisation and robust tangencies, Preprint, arXiv: 2011.08926, 2020. |
[22] |
L. Dieci and J. Rebaza, Point-to-periodic and periodic-to-periodic connections, BIT Numerical Mathematics, 44 (2004), 41-62; with erratum in 44 (2004), 617-618.
doi: 10.1023/B:BITN.0000046846.33609.da. |
[23] |
E. J. Doedel,
Auto, a program for the automatic bifurcation analysis of autonomous systems, Congr. Numer., 30 (1981), 265-284.
|
[24] |
E. J. Doedel, Auto-07P: Continuation and bifurcation software for ordinary differential equations, With major contributions from A.R. Champneys, T. F. Fairgrieve, Yu. A. Kuznetsov, B. E. Oldeman, R. C. Paffenroth, B. Sandstede, X. J. Wang and C. Zhang, Concordia University, 2007; available at http://cmvl.cs.concordia.ca/auto/. |
[25] |
E. J. Doedel, B. W. Kooi, G. A. K. van Voorn and Y. A. Kuznetsov,
Continuation of connecting orbits in 3D-ODEs: (Ⅰ) Point-to-cycle connections, Int. J. Bifur. Chaos, 18 (2008), 1889-1903.
doi: 10.1142/S0218127408021439. |
[26] |
E. J. Doedel, B. W. Kooi, G. A. K. van Voorn and Y. A. Kuznetsov,
Continuation of connecting orbits in 3D-ODEs: (Ⅱ) Cycle-to-cycle connections, Int. J. Bifur. Chaos, 19 (2009), 159-169.
doi: 10.1142/S0218127409022804. |
[27] |
H. R. Dullin and A. Wittek,
Complete Poincaré sections and tangent sets, J. Phys. A, 28 (1995), 7157-7180.
doi: 10.1088/0305-4470/28/24/015. |
[28] |
L. Edelstein-Keshet, Mathematical Models in Biology, Birkäuser Mathematics Series, Random House, Inc., New York, 1988. |
[29] |
G. B. Ermentrout and D. H. Terman, Mathematical Foundations of Neuroscience, , Interdisciplinary Applied Mathematics 35, Springer, New York, 2010.
doi: 10.1007/978-0-387-87708-2. |
[30] |
J. P. England, B. Krauskopf and H. M. Osinga,
Computing one-dimensional global manifolds of Poincaré maps by continuation, SIAM J. Appl. Dynam. Syst., 4 (2005), 1008-1041.
doi: 10.1137/05062408X. |
[31] |
Z. Galias,
Positive topological entropy of Chua's circuit: A computer assisted proof, Internat. J. Bifur. Chaos, 7 (1997), 331-349.
doi: 10.1142/S0218127497000224. |
[32] |
S. V. Gonchenko, J. D. Meiss and I. I. Ovsyannikov,
Chaotic dynamics of three-dimensional Hénon maps that originate from a homoclinic bifurcation, Regul. Chaotic Dyn., 11 (2006), 191-212.
doi: 10.1070/RD2006v011n02ABEH000345. |
[33] |
S. V. Gonchenko, I. I. Ovsyannikov, C. Simó and D. Turaev,
Three-dimensional Hénon-like map and wild Lorenz-like attractors, Int. J. Bifur. Chaos, 15 (2005), 3493-3508.
doi: 10.1142/S0218127405014180. |
[34] |
S. V. Gonchenko, L. P. Shilnikov and D. Turaev,
On global bifurcations in three-dimensional diffeomorphisms leading to wild Lorenz-like attractors, Regul. Chaotic Dyn., 14 (2009), 137-147.
doi: 10.1134/S1560354709010092. |
[35] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-1140-2. |
[36] |
S. Hittmeyer, B. Krauskopf and H. M. Osinga,
Interacting global invariant sets in a planar map model of wild chaos, SIAM J. Appl. Dynam. Syst., 12 (2013), 1280-1329.
doi: 10.1137/120902860. |
[37] |
S. Hittmeyer, B. Krauskopf, H. M. Osinga and K. Shinohara, Existence of blenders in a Hénon-like family: Geometric insights from invariant manifold computations, Nonlinearity, 31 (2018), R239-R267.
doi: 10.1088/1361-6544/aacd66. |
[38] |
S. Hittmeyer, B. Krauskopf, H. M. Osinga and K. Shinohara,
How to identify a hyperbolic set as a blender, Discrete Contin. Dyn. Syst., 40 (2020), 6815-6836.
doi: 10.3934/dcds.2020295. |
[39] |
A. J. Homburg and B. Sandstede, Homoclinic and heteroclinic bifurcations in vector fields, In Handbook of Dynamical Systems, (eds. B. Hasselblatt, H. W. Broer and F. Takens), Elsevier North Holland, 3 (2010), 379-524.
doi: 10.1016/S1874-575X(10)00316-4. |
[40] |
T. Jackson and A. Radunskaya, Applications of Dynamical Systems in Biology and Medicine, The IMA Volumes in Mathematics and its Applications, 158, Springer, New York, 2015.
doi: 10.1007/978-1-4939-2782-1. |
[41] |
W. Just and H. Kantz,
Some considerations on Poincaré maps for chaotic flows, J. Phys. A, 33 (2000), 163-170.
doi: 10.1088/0305-4470/33/1/310. |
[42] |
E. J. Kostelich, I. Kan, C. Grebogi, E. Ott and J. Yorke,
Unstable dimension variability: A source of nonhyperbolicity in chaotic systems, Physica D, 109 (1997), 81-90.
doi: 10.1016/S0167-2789(97)00161-9. |
[43] |
B. Krauskopf and B. E. Oldeman,
Bifurcations of global reinjection orbits near a saddle-node Hopf bifurcation, Nonlinearity, 19 (2006), 2149-2167.
doi: 10.1088/0951-7715/19/9/010. |
[44] |
B. Krauskopf and H. M. Osinga, Computing invariant manifolds via the continuation of orbit segments, In Numerical Continuation Methods for Dynamical Systems, (eds. B. Krauskopf, H. M. Osinga and J. Galán-Vioque), Understanding Complex Systems, Springer, Doordrecht, (2007), 117-154.
doi: 10.1007/978-1-4020-6356-5_4. |
[45] |
B. Krauskopf, H. M. Osinga, E. J. Doedel, M. E. Henderson, J. Guckenheimer, A. Vladimirsky, M. Dellnitz and O. Junge,
A survey of methods for computing (un)stable manifolds of vector fields, Int. J. Bifur. Chaos, 15 (2005), 763-791.
doi: 10.1142/S0218127405012533. |
[46] |
B. Krauskopf and T. Rieß,
A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits, Nonlinearity, 21 (2008), 1655-1690.
doi: 10.1088/0951-7715/21/8/001. |
[47] |
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3$^{rd}$ edition, Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-3978-7. |
[48] |
C. M. Lee, P. J. Collins, B. Krauskopf and H. M. Osinga,
Tangency bifurcations of global Poincaré maps, SIAM J. Appl. Dynam. Syst., 7 (2008), 712-754.
doi: 10.1137/07069972X. |
[49] |
D. Li,
Homoclinic bifurcations that give rise to heterodimensional cycles near a saddle-focus equilibrium, Nonlinearity, 30 (2017), 173-206.
doi: 10.1088/1361-6544/30/1/173. |
[50] |
X.-B. Lin,
Using Melnikov's method to solve Shilnikov's problems, Proc. R. Soc. Edinb. A, 116 (1990), 295-325.
doi: 10.1017/S0308210500031528. |
[51] |
B. E. Oldeman, A. R. Champneys and B. Krauskopf,
Homoclinic branch switching: A numerical implementation of Lin's method, Int. J. Bifur. Chaos, 13 (2003), 2977-2999.
doi: 10.1142/S0218127403008326. |
[52] |
J. Palis, Homoclinic bifurcations, sensitive-chaotic dynamics and strange attractors, In Dynamical Systems and Related Topics (Nagoya, 1990) (ed. K. Shiraiwa), Adv. Ser. Dynam. Systems, World Sci. Publ., River Edge, NJ, 9 (1991), 466-472. |
[53] |
J. Palis and W. de Melo, Geometric Theory of Dynamical Systems, Springer-Verlag, New York-Berlin, 1982.
![]() ![]() |
[54] |
J. Palis and F. Takens, Hyperbolicity & Sensitive Chaotic Dynamics at Homoclinic Bifurcations, Cambridge University Press, 1993.
![]() ![]() |
[55] |
J. D. M. Rademacher,
Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit, J. Diff. Eqns., 218 (2005), 390-443.
doi: 10.1016/j.jde.2005.03.016. |
[56] |
J. D. M. Rademacher,
Lyapunov-Schmidt reduction for unfolding heteroclinic networks of equilibria and periodic orbits with tangencies, J. Diff. Eqns., 249 (2010), 305-348.
doi: 10.1016/j.jde.2010.04.007. |
[57] |
R. K. W. Roeder, B. I. Rapoport and T. E. Evans,
Explicit calculations of homoclinic tangles in tokamaks, Phys. Plasmas, 10 (2003), 3796-3799.
doi: 10.1063/1.1592515. |
[58] |
S. Smale,
Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
doi: 10.1090/S0002-9904-1967-11798-1. |
[59] |
D. Turaev and L. P. Shilnikov,
An example of a wild strange attractor, Sb. Math., 189 (1998), 291-314.
doi: 10.1070/SM1998v189n02ABEH000300. |
[60] |
R. L. Viana, E. C. Da Silva, T. Kroetz, I. L. Caldas, M. Roberto and M. A. F. Sanjuán,
Fractal structures in nonlinear plasma physics, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 369 (2011), 371-395.
doi: 10.1098/rsta.2010.0253. |
[61] |
N. Wong, B. Krauskopf and H. M. Osinga, Cycles Between Saddle Periodic Orbits in a Concrete Model of Calcium Dynamics, 2021 SIAM Conference on Dynamical Systems, Poster presentation, 2021. |
[62] |
W. B. Zhang, Discrete Dynamical Systems, Bifurcations and Chaos in Economics, Mathematics in Science and Engineering, 204, Elsevier North Holland, 2006. |
[63] |
W. Zhang, B. Krauskopf and V. Kirk,
How to find a codimension-one heteroclinic cycle between two periodic orbits, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 2825-2851.
doi: 10.3934/dcds.2012.32.2825. |
show all references
References:
[1] |
D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Inst. Steklov, 90 (1967), 209 pp. |
[2] |
A. Atri, J. Amundsen, D. Clapham and J. Sneyd,
A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte, Biophysical J., 65 (1993), 1727-1739.
doi: 10.1016/S0006-3495(93)81191-3. |
[3] |
R. Bamón, J. Kiwi and J. Rivera-Letelier, Wild Lorenz-like attractors, Preprint, 2006, arXiv: math/0508045. |
[4] |
W.-J. Beyn,
The numerical computation of connecting orbits in dynamical systems, IMA J. Numer. Anal., 10 (1990), 379-405.
doi: 10.1093/imanum/10.3.379. |
[5] |
W.-J. Beyn, On well-posed problems for connecting orbits in dynamical systems, In Chaotic Numerics, (eds. P. E. Kloeden and K. J. Palmer), Contemporary Mathematics, American Mathematical Society, Rhode Island, 172 (1994), 131-168.
doi: 10.1090/conm/172/01802. |
[6] |
G. D. Birkhoff,
Dynamical systems with two degrees of freedom, Trans. Amer. Math. Soc., 18 (1917), 199-300.
doi: 10.1090/S0002-9947-1917-1501070-3. |
[7] |
C. Bonatti and S. Crovisier,
Récurrence et généricité, Invent. Math., 158 (2004), 33-104.
doi: 10.1007/s00222-004-0368-1. |
[8] |
C. Bonatti, S. Crovisier, L. J. Díaz and A. Wilkinson,
What is $\ldots$ a blender?, Notices Amer. Math. Soc., 63 (2016), 1175-1178.
doi: 10.1090/noti1438. |
[9] |
C. Bonatti and L. J. Díaz,
Persistent nonhyperbolic transitive diffeomorphisms, Ann. of Math., 143 (1996), 357-396.
doi: 10.2307/2118647. |
[10] |
C. Bonatti and L. J. Díaz,
Robust heterodimensional cycles and $C^1$-generic consequences, J. Inst. Math. Jussieu, 7 (2008), 469-525.
doi: 10.1017/S1474748008000030. |
[11] |
C. Bonatti and L. J. Díaz,
Abundance of $C^1$-robust homoclinic tangencies, Trans. Amer. Math. Soc., 364 (2012), 5111-5148.
doi: 10.1090/S0002-9947-2012-05445-6. |
[12] |
C. Bonatti, L. J. Díaz and S. Kiriki,
Stabilization of heterodimensional cycles, Nonlinearity, 25 (2012), 931-960.
doi: 10.1088/0951-7715/25/4/931. |
[13] |
C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective, Springer-Verlag, Berlin, 2005. |
[14] |
A. R. Champneys, Y. A. Kuznetsov and B. Sandstede,
A numerical toolbox for homoclinic bifurcation analysis, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6 (1996), 867-887.
doi: 10.1142/S0218127496000485. |
[15] |
I. C. Christov, R. M. Lueptow, J. M. Ottino and R. Sturman,
A study in three-dimensional chaotic dynamics: Granular flow and transport in a bi-axial spherical tumbler, SIAM J. Appl. Dynam. Syst., 13 (2014), 901-943.
doi: 10.1137/130934076. |
[16] |
S. Crovisier and E. R. Pujals,
Essential hyperbolicity and homoclinic bifurcations: A dichotomy phenomenon/mechanism for diffeomorphisms, Invent. Math., 201 (2015), 385-517.
doi: 10.1007/s00222-014-0553-9. |
[17] |
L. J. Díaz,
Robust nonhyperbolic dynamics and heterodimensional cycles, Ergod. Theory Dyn. Syst., 15 (1995), 291-315.
doi: 10.1017/S0143385700008385. |
[18] |
L. J. Díaz, S. Kiriki and K. Shinohara,
Blenders in centre unstable Hénon-like families: With an application to heterodimensional bifurcations, Nonlinearity, 27 (2014), 353-378.
doi: 10.1088/0951-7715/27/3/353. |
[19] |
L. J. Díaz and S. A. Pérez, Hénon-like families and blender-horseshoes at nontransverse heterodimensional cycles, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1930006, 22 pp.
doi: 10.1142/S0218127419300064. |
[20] |
L. J. Díaz and S. A. Pérez, Blender-horseshoes in center-unstable Hénon-like families, In New Trends in One-Dimensional Dynamics, Springer Proc. Math., Springer, Cham, 285 (2019), 137-163.
doi: 10.1007/978-3-030-16833-9_8. |
[21] |
L. J. Díaz and S. A. Pérez, Nontransverse heterodimensional cycles: Stabilisation and robust tangencies, Preprint, arXiv: 2011.08926, 2020. |
[22] |
L. Dieci and J. Rebaza, Point-to-periodic and periodic-to-periodic connections, BIT Numerical Mathematics, 44 (2004), 41-62; with erratum in 44 (2004), 617-618.
doi: 10.1023/B:BITN.0000046846.33609.da. |
[23] |
E. J. Doedel,
Auto, a program for the automatic bifurcation analysis of autonomous systems, Congr. Numer., 30 (1981), 265-284.
|
[24] |
E. J. Doedel, Auto-07P: Continuation and bifurcation software for ordinary differential equations, With major contributions from A.R. Champneys, T. F. Fairgrieve, Yu. A. Kuznetsov, B. E. Oldeman, R. C. Paffenroth, B. Sandstede, X. J. Wang and C. Zhang, Concordia University, 2007; available at http://cmvl.cs.concordia.ca/auto/. |
[25] |
E. J. Doedel, B. W. Kooi, G. A. K. van Voorn and Y. A. Kuznetsov,
Continuation of connecting orbits in 3D-ODEs: (Ⅰ) Point-to-cycle connections, Int. J. Bifur. Chaos, 18 (2008), 1889-1903.
doi: 10.1142/S0218127408021439. |
[26] |
E. J. Doedel, B. W. Kooi, G. A. K. van Voorn and Y. A. Kuznetsov,
Continuation of connecting orbits in 3D-ODEs: (Ⅱ) Cycle-to-cycle connections, Int. J. Bifur. Chaos, 19 (2009), 159-169.
doi: 10.1142/S0218127409022804. |
[27] |
H. R. Dullin and A. Wittek,
Complete Poincaré sections and tangent sets, J. Phys. A, 28 (1995), 7157-7180.
doi: 10.1088/0305-4470/28/24/015. |
[28] |
L. Edelstein-Keshet, Mathematical Models in Biology, Birkäuser Mathematics Series, Random House, Inc., New York, 1988. |
[29] |
G. B. Ermentrout and D. H. Terman, Mathematical Foundations of Neuroscience, , Interdisciplinary Applied Mathematics 35, Springer, New York, 2010.
doi: 10.1007/978-0-387-87708-2. |
[30] |
J. P. England, B. Krauskopf and H. M. Osinga,
Computing one-dimensional global manifolds of Poincaré maps by continuation, SIAM J. Appl. Dynam. Syst., 4 (2005), 1008-1041.
doi: 10.1137/05062408X. |
[31] |
Z. Galias,
Positive topological entropy of Chua's circuit: A computer assisted proof, Internat. J. Bifur. Chaos, 7 (1997), 331-349.
doi: 10.1142/S0218127497000224. |
[32] |
S. V. Gonchenko, J. D. Meiss and I. I. Ovsyannikov,
Chaotic dynamics of three-dimensional Hénon maps that originate from a homoclinic bifurcation, Regul. Chaotic Dyn., 11 (2006), 191-212.
doi: 10.1070/RD2006v011n02ABEH000345. |
[33] |
S. V. Gonchenko, I. I. Ovsyannikov, C. Simó and D. Turaev,
Three-dimensional Hénon-like map and wild Lorenz-like attractors, Int. J. Bifur. Chaos, 15 (2005), 3493-3508.
doi: 10.1142/S0218127405014180. |
[34] |
S. V. Gonchenko, L. P. Shilnikov and D. Turaev,
On global bifurcations in three-dimensional diffeomorphisms leading to wild Lorenz-like attractors, Regul. Chaotic Dyn., 14 (2009), 137-147.
doi: 10.1134/S1560354709010092. |
[35] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-1140-2. |
[36] |
S. Hittmeyer, B. Krauskopf and H. M. Osinga,
Interacting global invariant sets in a planar map model of wild chaos, SIAM J. Appl. Dynam. Syst., 12 (2013), 1280-1329.
doi: 10.1137/120902860. |
[37] |
S. Hittmeyer, B. Krauskopf, H. M. Osinga and K. Shinohara, Existence of blenders in a Hénon-like family: Geometric insights from invariant manifold computations, Nonlinearity, 31 (2018), R239-R267.
doi: 10.1088/1361-6544/aacd66. |
[38] |
S. Hittmeyer, B. Krauskopf, H. M. Osinga and K. Shinohara,
How to identify a hyperbolic set as a blender, Discrete Contin. Dyn. Syst., 40 (2020), 6815-6836.
doi: 10.3934/dcds.2020295. |
[39] |
A. J. Homburg and B. Sandstede, Homoclinic and heteroclinic bifurcations in vector fields, In Handbook of Dynamical Systems, (eds. B. Hasselblatt, H. W. Broer and F. Takens), Elsevier North Holland, 3 (2010), 379-524.
doi: 10.1016/S1874-575X(10)00316-4. |
[40] |
T. Jackson and A. Radunskaya, Applications of Dynamical Systems in Biology and Medicine, The IMA Volumes in Mathematics and its Applications, 158, Springer, New York, 2015.
doi: 10.1007/978-1-4939-2782-1. |
[41] |
W. Just and H. Kantz,
Some considerations on Poincaré maps for chaotic flows, J. Phys. A, 33 (2000), 163-170.
doi: 10.1088/0305-4470/33/1/310. |
[42] |
E. J. Kostelich, I. Kan, C. Grebogi, E. Ott and J. Yorke,
Unstable dimension variability: A source of nonhyperbolicity in chaotic systems, Physica D, 109 (1997), 81-90.
doi: 10.1016/S0167-2789(97)00161-9. |
[43] |
B. Krauskopf and B. E. Oldeman,
Bifurcations of global reinjection orbits near a saddle-node Hopf bifurcation, Nonlinearity, 19 (2006), 2149-2167.
doi: 10.1088/0951-7715/19/9/010. |
[44] |
B. Krauskopf and H. M. Osinga, Computing invariant manifolds via the continuation of orbit segments, In Numerical Continuation Methods for Dynamical Systems, (eds. B. Krauskopf, H. M. Osinga and J. Galán-Vioque), Understanding Complex Systems, Springer, Doordrecht, (2007), 117-154.
doi: 10.1007/978-1-4020-6356-5_4. |
[45] |
B. Krauskopf, H. M. Osinga, E. J. Doedel, M. E. Henderson, J. Guckenheimer, A. Vladimirsky, M. Dellnitz and O. Junge,
A survey of methods for computing (un)stable manifolds of vector fields, Int. J. Bifur. Chaos, 15 (2005), 763-791.
doi: 10.1142/S0218127405012533. |
[46] |
B. Krauskopf and T. Rieß,
A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits, Nonlinearity, 21 (2008), 1655-1690.
doi: 10.1088/0951-7715/21/8/001. |
[47] |
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3$^{rd}$ edition, Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-3978-7. |
[48] |
C. M. Lee, P. J. Collins, B. Krauskopf and H. M. Osinga,
Tangency bifurcations of global Poincaré maps, SIAM J. Appl. Dynam. Syst., 7 (2008), 712-754.
doi: 10.1137/07069972X. |
[49] |
D. Li,
Homoclinic bifurcations that give rise to heterodimensional cycles near a saddle-focus equilibrium, Nonlinearity, 30 (2017), 173-206.
doi: 10.1088/1361-6544/30/1/173. |
[50] |
X.-B. Lin,
Using Melnikov's method to solve Shilnikov's problems, Proc. R. Soc. Edinb. A, 116 (1990), 295-325.
doi: 10.1017/S0308210500031528. |
[51] |
B. E. Oldeman, A. R. Champneys and B. Krauskopf,
Homoclinic branch switching: A numerical implementation of Lin's method, Int. J. Bifur. Chaos, 13 (2003), 2977-2999.
doi: 10.1142/S0218127403008326. |
[52] |
J. Palis, Homoclinic bifurcations, sensitive-chaotic dynamics and strange attractors, In Dynamical Systems and Related Topics (Nagoya, 1990) (ed. K. Shiraiwa), Adv. Ser. Dynam. Systems, World Sci. Publ., River Edge, NJ, 9 (1991), 466-472. |
[53] |
J. Palis and W. de Melo, Geometric Theory of Dynamical Systems, Springer-Verlag, New York-Berlin, 1982.
![]() ![]() |
[54] |
J. Palis and F. Takens, Hyperbolicity & Sensitive Chaotic Dynamics at Homoclinic Bifurcations, Cambridge University Press, 1993.
![]() ![]() |
[55] |
J. D. M. Rademacher,
Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit, J. Diff. Eqns., 218 (2005), 390-443.
doi: 10.1016/j.jde.2005.03.016. |
[56] |
J. D. M. Rademacher,
Lyapunov-Schmidt reduction for unfolding heteroclinic networks of equilibria and periodic orbits with tangencies, J. Diff. Eqns., 249 (2010), 305-348.
doi: 10.1016/j.jde.2010.04.007. |
[57] |
R. K. W. Roeder, B. I. Rapoport and T. E. Evans,
Explicit calculations of homoclinic tangles in tokamaks, Phys. Plasmas, 10 (2003), 3796-3799.
doi: 10.1063/1.1592515. |
[58] |
S. Smale,
Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
doi: 10.1090/S0002-9904-1967-11798-1. |
[59] |
D. Turaev and L. P. Shilnikov,
An example of a wild strange attractor, Sb. Math., 189 (1998), 291-314.
doi: 10.1070/SM1998v189n02ABEH000300. |
[60] |
R. L. Viana, E. C. Da Silva, T. Kroetz, I. L. Caldas, M. Roberto and M. A. F. Sanjuán,
Fractal structures in nonlinear plasma physics, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 369 (2011), 371-395.
doi: 10.1098/rsta.2010.0253. |
[61] |
N. Wong, B. Krauskopf and H. M. Osinga, Cycles Between Saddle Periodic Orbits in a Concrete Model of Calcium Dynamics, 2021 SIAM Conference on Dynamical Systems, Poster presentation, 2021. |
[62] |
W. B. Zhang, Discrete Dynamical Systems, Bifurcations and Chaos in Economics, Mathematics in Science and Engineering, 204, Elsevier North Holland, 2006. |
[63] |
W. Zhang, B. Krauskopf and V. Kirk,
How to find a codimension-one heteroclinic cycle between two periodic orbits, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 2825-2851.
doi: 10.3934/dcds.2012.32.2825. |












[1] |
Michihiro Hirayama, Naoya Sumi. Hyperbolic measures with transverse intersections of stable and unstable manifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1451-1476. doi: 10.3934/dcds.2013.33.1451 |
[2] |
Mirosław Lachowicz, Martin Parisot, Zuzanna Szymańska. Intracellular protein dynamics as a mathematical problem. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2551-2566. doi: 10.3934/dcdsb.2016060 |
[3] |
Ale Jan Homburg. Heteroclinic bifurcations of $\Omega$-stable vector fields on 3-manifolds. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 559-580. doi: 10.3934/dcds.1998.4.559 |
[4] |
Haitao Song, Weihua Jiang, Shengqiang Liu. Virus dynamics model with intracellular delays and immune response. Mathematical Biosciences & Engineering, 2015, 12 (1) : 185-208. doi: 10.3934/mbe.2015.12.185 |
[5] |
Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 917-923. doi: 10.3934/dcdss.2014.7.917 |
[6] |
Peng Jiang. Unique global solution of an initial-boundary value problem to a diffusion approximation model in radiation hydrodynamics. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3015-3037. doi: 10.3934/dcds.2015.35.3015 |
[7] |
Mauro Garavello. Boundary value problem for a phase transition model. Networks and Heterogeneous Media, 2016, 11 (1) : 89-105. doi: 10.3934/nhm.2016.11.89 |
[8] |
Flaviano Battelli, Ken Palmer. Heteroclinic connections in singularly perturbed systems. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 431-461. doi: 10.3934/dcdsb.2008.9.431 |
[9] |
Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure and Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319 |
[10] |
Tianyu Yang, Yang Yang. A stable non-iterative reconstruction algorithm for the acoustic inverse boundary value problem. Inverse Problems and Imaging, 2022, 16 (1) : 1-18. doi: 10.3934/ipi.2021038 |
[11] |
Gilles Carbou, Bernard Hanouzet. Relaxation approximation of the Kerr model for the impedance initial-boundary value problem. Conference Publications, 2007, 2007 (Special) : 212-220. doi: 10.3934/proc.2007.2007.212 |
[12] |
Byung-Hoon Hwang, Seok-Bae Yun. Stationary solutions to the boundary value problem for the relativistic BGK model in a slab. Kinetic and Related Models, 2019, 12 (4) : 749-764. doi: 10.3934/krm.2019029 |
[13] |
Francesca Marcellini. Existence of solutions to a boundary value problem for a phase transition traffic model. Networks and Heterogeneous Media, 2017, 12 (2) : 259-275. doi: 10.3934/nhm.2017011 |
[14] |
Jiying Ma, Dongmei Xiao. Nonlinear dynamics of a mathematical model on action potential duration and calcium transient in paced cardiac cells. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2377-2396. doi: 10.3934/dcdsb.2013.18.2377 |
[15] |
Sunghan Kim, Ki-Ahm Lee, Henrik Shahgholian. Homogenization of the boundary value for the Dirichlet problem. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6843-6864. doi: 10.3934/dcds.2019234 |
[16] |
Luis Barreira, Claudia Valls. Existence of stable manifolds for nonuniformly hyperbolic $c^1$ dynamics. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 307-327. doi: 10.3934/dcds.2006.16.307 |
[17] |
Hideo Ikeda, Koji Kondo, Hisashi Okamoto, Shoji Yotsutani. On the global branches of the solutions to a nonlocal boundary-value problem arising in Oseen's spiral flows. Communications on Pure and Applied Analysis, 2003, 2 (3) : 381-390. doi: 10.3934/cpaa.2003.2.381 |
[18] |
Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59 |
[19] |
Alberto Cabada, J. Ángel Cid. Heteroclinic solutions for non-autonomous boundary value problems with singular $\Phi$-Laplacian operators. Conference Publications, 2009, 2009 (Special) : 118-122. doi: 10.3934/proc.2009.2009.118 |
[20] |
G. Métivier, K. Zumbrun. Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 205-220. doi: 10.3934/dcds.2004.11.205 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]