\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the symmetry relation between different characteristic functions for additively separable cooperative games

This study was partially done while E. Gromova was with St. Petersburg State University

Abstract Full Text(HTML) Related Papers Cited by
  • We analyze 4 characteristic functions $ V^\alpha $, $ V^\delta $, $ V^\zeta $, and $ V^\eta $, and give a necessary condition for these functions to satisfy the relation $ V^\alpha - V^\delta = V^\zeta - V^\eta $ for all coalitions $ S $. To do so, we define and formally analyze the class of additively separable games. It is shown that many important types of games, both static and dynamic, belong to this class.

    Mathematics Subject Classification: Primary: 91A12;Secondary: 91A06.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] E. BacchiegaL. Lambertini and A. Palestini, On the time consistency of equilibria in a class of additively separable differential games, J. Optim. Theory Appl., 145 (2010), 415-427.  doi: 10.1007/s10957-010-9673-6.
    [2] P. Chander and H. Tulkens, The core of an economy game with multilateral externalities, Internat. J. Game Theory, 26 (1997), 379-401.  doi: 10.1007/s001820050041.
    [3] E. J. Dockner, S. J orgensen, N. V. Long and G. Sorger, Differential Games in Economics and Management Science, Cambridge University Press: Cambridge, 2000. doi: 10.1017/CBO9780511805127.
    [4] W. M. Gorman, Conditions for additive separability, Econometrica: Journal of the Econometric Society, (1968), 605–609.
    [5] E. GromovaE. Marova and D. Gromov, A substitute for the classical Neumann–Morgenstern characteristic function in cooperative differential games, J. Dyn. Games, 7 (2020), 105-122.  doi: 10.3934/jdg.2020007.
    [6] E. Gromova and L. Petrosyan, On a approach to the construction of characteristic function for cooperative differential games, Autom. Remote Control, 78 (2017), 1680-1692.  doi: 10.1134/s0005117917090120.
    [7] T. Kamihigashi and T. Furusawa, Global dynamics in repeated games with additively separable payoffs, Review of Economic Dynamics, 13 (2010), 899-918. 
    [8] E. MarovaE. GromovaP. Barsuk and A. Shagushina, On the effect of the absorption coefficient in a differential game of pollution control, Mathematics, 8 (2020), 961-984. 
    [9] L. Petrosjan and E. Gromova, Two-level cooperation in coalitional differential games, Tr. Inst. Mat. Mekh., 20 (2014), 193-203. 
    [10] L. Petrosjan and G. Zaccour, Time-consistent Shapley value allocation of pollution cost reduction, J. Econom. Dynam. Control, 27 (2003), 381-398.  doi: 10.1016/S0165-1889(01)00053-7.
    [11] L. Petrosyan and N. Zenkevich, Game Theory, 2$^nd$ edition, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2016. doi: 10.1142/9824.
    [12] P. V. Reddy and G. Zaccour, A friendly computable characteristic function, Math. Social Sci., 82 (2016), 18-25.  doi: 10.1016/j.mathsocsci.2016.03.008.
    [13] L. S. Shapley, A value for n-person games, Contributions to the Theory of Games, 28 (1953), 307-317. 
    [14] J. Von Neumann and O. Morgenstern, Game Theory and Economic Behavior, Princeton University Press: Princeton, NJ, USA, 1944.
  • 加载中
SHARE

Article Metrics

HTML views(1004) PDF downloads(452) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return