\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Simultaneous diophantine approximation with quadratic and linear forms

Abstract Related Papers Cited by
  • Let $Q$ be a nondegenerate indefinite quadratic form on $\mathbb{R}^n$, $n\geq 3$, which is not a scalar multiple of a rational quadratic form, and let $C_Q=\{v\in \mathbb R^n | Q(v)=0\}$. We show that given $v_1\in C_Q$, for almost all $v\in C_Q \setminus \mathbb R v_1$ the following holds: for any $a\in \mathbb R$, any affine plane $P$ parallel to the plane of $v_1$ and $v$, and $\epsilon >0$ there exist primitive integral $n$-tuples $x$ within $\epsilon $ distance of $P$ for which $|Q(x)-a|<\epsilon$. An analogous result is also proved for almost all lines on $C_Q$.
    Mathematics Subject Classification: Primary: 11H55; Secondary: 22E40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return