2017, 11: 1-16. doi: 10.3934/jmd.2017001

Logarithm laws for unipotent flows, Ⅱ

1. 

Department of Mathematics, University of Washington, Seattle, WA 98195, USA

2. 

Department of Mathematics, Yale University, New Haven, CT 06520, USA

Received  October 22, 2014 Revised  August 30, 2016 Published  December 2016

Fund Project: Supported by NSF grants DMS 0603636, DMS 1069153, and CAREER grant DMS 1351853.Supported by NSF grant DMS 0801195 and 1265695.

We prove analogs of the logarithm laws of Sullivan and KleinbockMargulis in the context of unipotent flows. In particular, we prove results for horospherical actions on homogeneous spaces G/Γ.

Citation: Jayadev S. Athreya, Gregory A. Margulis. Logarithm laws for unipotent flows, Ⅱ. Journal of Modern Dynamics, 2017, 11: 1-16. doi: 10.3934/jmd.2017001
References:
[1]

H. Abels and G. Margulis, Coarsely geodesic metrics on reductive groups, in Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge, (2004), 163-183. 

[2]

H. Abels and G. Margulis, preprint.

[3]

J. S. Athreya, Cusp excursions on parameter spaces, J. London Math. Soc., 87 (2013), 741-765.  doi: 10.1112/jlms.2013.87.issue-3.

[4]

J. S. Athreya and Y. Cheung, A Poincaré section for horocycle flow on the space of lattices, Int. Math. Res. Notices, no. 10 (2014), 2643-2690.  doi: 10.1093/imrn/rnt003.

[5]

J. S. Athreya and G. Margulis, Logarithm laws for unipotent flows, I, Journal of Modern Dynamics, 3 (2009), 359-378.  doi: 10.3934/jmd.2009.3.359.

[6]

J. S. Athreya and F. Paulin, Logarithm laws for strong unstable foliations in negative curvature and non-Archimedean Diophantine approximation, Groups, Geometry, and Dynamics, 8 (2014), 285-309.  doi: 10.4171/GGD/226.

[7]

A. Borel, Linear Algebraic Groups, 2nd enlarged edition, Springer Verlag, New York, 1991. doi: 10.1007/978-1-4612-0941-6.

[8]

S. G. Dani, Divergent trajectories of flows on homogeneous spaces and Diophantine approximation, J. Reine Angew. Math., 359 (1985), 55-89.  doi: 10.1515/crll.1985.359.55.

[9]

W. Feller, An Introduction to Probability Theory and Its Applications, 1, Wiley, (1957). 

[10]

H. Garland and M. S. Raghunathan, Fundamental domains for lattices in (R-)rank 1 semisimple Lie groups, Annals of Math. (2), 92 (1970), 279-326.  doi: 10.2307/1970838.

[11]

J. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1972.

[12]

J. Humphreys, Linear Algebraic Groups, 2nd printing, Springer-Verlag, New York-Heidelberg, 1975.

[13]

D. Kelmer and A. Mohammadi, Logarithm laws for one parameter unipotent flows, Geom. Funct. Anal., 22 (2012), 756-784.  doi: 10.1007/s00039-012-0181-8.

[14]

D. Y. Kleinbock and G. A. Margulis, Logarithm laws for flows on homogeneous spaces, Invent. Math., 138 (1999), 451-494.  doi: 10.1007/s002220050350.

[15]

E. Leuzinger, Geodesic rays in locally symmetric spaces, Differential Geometry and its Applications, 6 (1996), 55-65.  doi: 10.1016/0926-2245(96)00007-1.

[16]

G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Springer-Verlag, Berlin-New York, 1991. doi: 10.1007/978-3-642-51445-6.

[17]

C. C. Moore, Ergodicity of flows on homogeneous spaces, Amer. J. Math., 88 (1966), 154-178.  doi: 10.2307/2373052.

[18]

G. D. Mostow, Strong Rigidity of Locally Symmetric Spaces, Annals of Math. Studies, Princeton Univ. Press, 1973.

[19]

D. Sullivan, Disjoint spheres, approximation by quadratic numbers and the logarithm law for geodesics, Acta Mathematica, 149 (1982), 215-237.  doi: 10.1007/BF02392354.

[20]

B. Weiss, Divergent trajectories on noncompact parameter spaces, Geom. and Funct. Anal., 14 (2004), 94-149.  doi: 10.1007/s00039-004-0453-z.

show all references

References:
[1]

H. Abels and G. Margulis, Coarsely geodesic metrics on reductive groups, in Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge, (2004), 163-183. 

[2]

H. Abels and G. Margulis, preprint.

[3]

J. S. Athreya, Cusp excursions on parameter spaces, J. London Math. Soc., 87 (2013), 741-765.  doi: 10.1112/jlms.2013.87.issue-3.

[4]

J. S. Athreya and Y. Cheung, A Poincaré section for horocycle flow on the space of lattices, Int. Math. Res. Notices, no. 10 (2014), 2643-2690.  doi: 10.1093/imrn/rnt003.

[5]

J. S. Athreya and G. Margulis, Logarithm laws for unipotent flows, I, Journal of Modern Dynamics, 3 (2009), 359-378.  doi: 10.3934/jmd.2009.3.359.

[6]

J. S. Athreya and F. Paulin, Logarithm laws for strong unstable foliations in negative curvature and non-Archimedean Diophantine approximation, Groups, Geometry, and Dynamics, 8 (2014), 285-309.  doi: 10.4171/GGD/226.

[7]

A. Borel, Linear Algebraic Groups, 2nd enlarged edition, Springer Verlag, New York, 1991. doi: 10.1007/978-1-4612-0941-6.

[8]

S. G. Dani, Divergent trajectories of flows on homogeneous spaces and Diophantine approximation, J. Reine Angew. Math., 359 (1985), 55-89.  doi: 10.1515/crll.1985.359.55.

[9]

W. Feller, An Introduction to Probability Theory and Its Applications, 1, Wiley, (1957). 

[10]

H. Garland and M. S. Raghunathan, Fundamental domains for lattices in (R-)rank 1 semisimple Lie groups, Annals of Math. (2), 92 (1970), 279-326.  doi: 10.2307/1970838.

[11]

J. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1972.

[12]

J. Humphreys, Linear Algebraic Groups, 2nd printing, Springer-Verlag, New York-Heidelberg, 1975.

[13]

D. Kelmer and A. Mohammadi, Logarithm laws for one parameter unipotent flows, Geom. Funct. Anal., 22 (2012), 756-784.  doi: 10.1007/s00039-012-0181-8.

[14]

D. Y. Kleinbock and G. A. Margulis, Logarithm laws for flows on homogeneous spaces, Invent. Math., 138 (1999), 451-494.  doi: 10.1007/s002220050350.

[15]

E. Leuzinger, Geodesic rays in locally symmetric spaces, Differential Geometry and its Applications, 6 (1996), 55-65.  doi: 10.1016/0926-2245(96)00007-1.

[16]

G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Springer-Verlag, Berlin-New York, 1991. doi: 10.1007/978-3-642-51445-6.

[17]

C. C. Moore, Ergodicity of flows on homogeneous spaces, Amer. J. Math., 88 (1966), 154-178.  doi: 10.2307/2373052.

[18]

G. D. Mostow, Strong Rigidity of Locally Symmetric Spaces, Annals of Math. Studies, Princeton Univ. Press, 1973.

[19]

D. Sullivan, Disjoint spheres, approximation by quadratic numbers and the logarithm law for geodesics, Acta Mathematica, 149 (1982), 215-237.  doi: 10.1007/BF02392354.

[20]

B. Weiss, Divergent trajectories on noncompact parameter spaces, Geom. and Funct. Anal., 14 (2004), 94-149.  doi: 10.1007/s00039-004-0453-z.

[1]

Jayadev S. Athreya, Gregory A. Margulis. Logarithm laws for unipotent flows, I. Journal of Modern Dynamics, 2009, 3 (3) : 359-378. doi: 10.3934/jmd.2009.3.359

[2]

Chihurn Kim, Dong Han Kim. On the law of logarithm of the recurrence time. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 581-587. doi: 10.3934/dcds.2004.10.581

[3]

Shucheng Yu. Logarithm laws for unipotent flows on hyperbolic manifolds. Journal of Modern Dynamics, 2017, 11: 447-476. doi: 10.3934/jmd.2017018

[4]

Santos González, Llorenç Huguet, Consuelo Martínez, Hugo Villafañe. Discrete logarithm like problems and linear recurring sequences. Advances in Mathematics of Communications, 2013, 7 (2) : 187-195. doi: 10.3934/amc.2013.7.187

[5]

Yongjiang Guo, Yuantao Song. The (functional) law of the iterated logarithm of the sojourn time for a multiclass queue. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1049-1076. doi: 10.3934/jimo.2018192

[6]

Li-Xin Zhang. A note on the cluster set of the law of the iterated logarithm under sub-linear expectations. Probability, Uncertainty and Quantitative Risk, 2022, 7 (2) : 85-100. doi: 10.3934/puqr.2022006

[7]

Alberto Bressan, Graziano Guerra. Shift-differentiabilitiy of the flow generated by a conservation law. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 35-58. doi: 10.3934/dcds.1997.3.35

[8]

Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255

[9]

Lukas F. Lang, Otmar Scherzer. Optical flow on evolving sphere-like surfaces. Inverse Problems and Imaging, 2017, 11 (2) : 305-338. doi: 10.3934/ipi.2017015

[10]

Michael Herty, Lorenzo Pareschi, Mohammed Seaïd. Enskog-like discrete velocity models for vehicular traffic flow. Networks and Heterogeneous Media, 2007, 2 (3) : 481-496. doi: 10.3934/nhm.2007.2.481

[11]

Anna Marciniak-Czochra, Andro Mikelić. A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 1065-1077. doi: 10.3934/dcdss.2014.7.1065

[12]

Fabio Bagagiolo, Rosario Maggistro, Raffaele Pesenti. Origin-to-destination network flow with path preferences and velocity controls: A mean field game-like approach. Journal of Dynamics and Games, 2021, 8 (4) : 359-380. doi: 10.3934/jdg.2021007

[13]

J. S. Athreya, Anish Ghosh, Amritanshu Prasad. Ultrametric logarithm laws I. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 337-348. doi: 10.3934/dcdss.2009.2.337

[14]

Zhen-Zhen Tao, Bing Sun. Error estimates for spectral approximation of flow optimal control problem with $ L^2 $-norm control constraint. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022030

[15]

Asim Aziz, Wasim Jamshed. Unsteady MHD slip flow of non Newtonian power-law nanofluid over a moving surface with temperature dependent thermal conductivity. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 617-630. doi: 10.3934/dcdss.2018036

[16]

Gildas Besançon, Didier Georges, Zohra Benayache. Towards nonlinear delay-based control for convection-like distributed systems: The example of water flow control in open channel systems. Networks and Heterogeneous Media, 2009, 4 (2) : 211-221. doi: 10.3934/nhm.2009.4.211

[17]

Liqun Qi, Shenglong Hu, Yanwei Xu. Spectral norm and nuclear norm of a third order tensor. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1101-1113. doi: 10.3934/jimo.2021010

[18]

Siyuan Tang. New time-changes of unipotent flows on quotients of Lorentz groups. Journal of Modern Dynamics, 2022, 18: 13-67. doi: 10.3934/jmd.2022002

[19]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5449-5463. doi: 10.3934/dcdsb.2020353

[20]

Afaf Bouharguane. On the instability of a nonlocal conservation law. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 419-426. doi: 10.3934/dcdss.2012.5.419

2021 Impact Factor: 0.641

Metrics

  • PDF downloads (209)
  • HTML views (277)
  • Cited by (2)

Other articles
by authors

[Back to Top]