We prove analogs of the logarithm laws of Sullivan and KleinbockMargulis in the context of unipotent flows. In particular, we prove results for horospherical actions on homogeneous spaces G/Γ.
Citation: |
[1] |
H. Abels and G. Margulis, Coarsely geodesic metrics on reductive groups, in Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge, (2004), 163-183.
![]() ![]() |
[2] |
H. Abels and G. Margulis, preprint.
![]() |
[3] |
J. S. Athreya, Cusp excursions on parameter spaces, J. London Math. Soc., 87 (2013), 741-765.
doi: 10.1112/jlms.2013.87.issue-3.![]() ![]() ![]() |
[4] |
J. S. Athreya and Y. Cheung, A Poincaré section for horocycle flow on the space of lattices, Int. Math. Res. Notices, no. 10 (2014), 2643-2690.
doi: 10.1093/imrn/rnt003.![]() ![]() ![]() |
[5] |
J. S. Athreya and G. Margulis, Logarithm laws for unipotent flows, I, Journal of Modern Dynamics, 3 (2009), 359-378.
doi: 10.3934/jmd.2009.3.359.![]() ![]() ![]() |
[6] |
J. S. Athreya and F. Paulin, Logarithm laws for strong unstable foliations in negative curvature and non-Archimedean Diophantine approximation, Groups, Geometry, and Dynamics, 8 (2014), 285-309.
doi: 10.4171/GGD/226.![]() ![]() ![]() |
[7] |
A. Borel, Linear Algebraic Groups, 2nd enlarged edition, Springer Verlag, New York, 1991.
doi: 10.1007/978-1-4612-0941-6.![]() ![]() ![]() |
[8] |
S. G. Dani, Divergent trajectories of flows on homogeneous spaces and Diophantine approximation, J. Reine Angew. Math., 359 (1985), 55-89.
doi: 10.1515/crll.1985.359.55.![]() ![]() ![]() |
[9] |
W. Feller, An Introduction to Probability Theory and Its Applications, 1, Wiley, (1957).
![]() ![]() |
[10] |
H. Garland and M. S. Raghunathan, Fundamental domains for lattices in (R-)rank 1 semisimple Lie groups, Annals of Math. (2), 92 (1970), 279-326.
doi: 10.2307/1970838.![]() ![]() ![]() |
[11] |
J. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1972.
![]() ![]() |
[12] |
J. Humphreys, Linear Algebraic Groups, 2nd printing, Springer-Verlag, New York-Heidelberg, 1975.
![]() ![]() |
[13] |
D. Kelmer and A. Mohammadi, Logarithm laws for one parameter unipotent flows, Geom. Funct. Anal., 22 (2012), 756-784.
doi: 10.1007/s00039-012-0181-8.![]() ![]() ![]() |
[14] |
D. Y. Kleinbock and G. A. Margulis, Logarithm laws for flows on homogeneous spaces, Invent. Math., 138 (1999), 451-494.
doi: 10.1007/s002220050350.![]() ![]() ![]() |
[15] |
E. Leuzinger, Geodesic rays in locally symmetric spaces, Differential Geometry and its Applications, 6 (1996), 55-65.
doi: 10.1016/0926-2245(96)00007-1.![]() ![]() ![]() |
[16] |
G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Springer-Verlag, Berlin-New York, 1991.
doi: 10.1007/978-3-642-51445-6.![]() ![]() ![]() |
[17] |
C. C. Moore, Ergodicity of flows on homogeneous spaces, Amer. J. Math., 88 (1966), 154-178.
doi: 10.2307/2373052.![]() ![]() ![]() |
[18] |
G. D. Mostow, Strong Rigidity of Locally Symmetric Spaces, Annals of Math. Studies, Princeton Univ. Press, 1973.
![]() ![]() |
[19] |
D. Sullivan, Disjoint spheres, approximation by quadratic numbers and the logarithm law for geodesics, Acta Mathematica, 149 (1982), 215-237.
doi: 10.1007/BF02392354.![]() ![]() ![]() |
[20] |
B. Weiss, Divergent trajectories on noncompact parameter spaces, Geom. and Funct. Anal., 14 (2004), 94-149.
doi: 10.1007/s00039-004-0453-z.![]() ![]() ![]() |