[1]
|
I. V. Artamkin, Canonical mappings of punctured curves with the simplest singularities, Mat. Sb., 195 (2004), 3–32; translation in Sb. Math., 195 (2004), 615–642.
doi: 10.1070/SM2004v195n05ABEH000818.
|
[2]
|
M. Bainbridge, P. Habegger and M. Möller, Teichmüller curves in genus three and just likely intersections in $ G_{m}^{n}\times G_{a}^{n} $, arXiv: 1410.6835, 2014.
|
[3]
|
I. Bouw and M. Möller, Differential equations associated with nonarithmetic Fuchsian groups, J. Lond. Math. Soc.(2), 81 (2010), 65-90.
doi: 10.1112/jlms/jdp059.
|
[4]
|
______, Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. of Math. (2), 172 (2010), 139-185.
doi: 10.4007/annals.2010.172.139.
|
[5]
|
M. Bainbridge and M. Möller, The Deligne-Mumford compactification of the real multiplication locus and Teichmüller curves in genus 3, Acta Math., 208 (2012), 1-92.
doi: 10.1007/s11511-012-0074-6.
|
[6]
|
I. Bouw, The p-rank of ramified covers of curves, Compositio Math., 126 (2001), 295-322.
doi: 10.1023/A:1017513122376.
|
[7]
|
K. Calta, Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc., 17 (2004), 871-908.
doi: 10.1090/S0894-0347-04-00461-8.
|
[8]
|
F. Catanese, M. Franciosi, K. Hulek and M. Reid, Embeddings of curves and surfaces, Nagoya Math. J., 154 (1999), 185-220.
doi: 10.1017/S0027763000025381.
|
[9]
|
D. A. Cox and S. Katz, Mirror Symmetry and Algebraic Geometry, Mathematical Surveys and Monographs, vol. 68, American Mathematical Society, Providence, RI, 1999.
doi: 10.1090/surv/068.
|
[10]
|
F. Catanese and R. Pignatelli, Pignatelli R., Fibrations of low genus. I, Ann. Sci. école Norm. Sup. (4), 39 (2006), 1011-1049.
doi: 10.1016/j.ansens.2006.10.001.
|
[11]
|
A. Kuribayashi and K. Komiya, On Weierstrass points of non-hyperelliptic compact Riemann surfaces of genus three, Hiroshima Math. J., 7 (1977), 743-768.
|
[12]
|
A. Kumar and R. Mukamel, Algebraic models and arithmetic geometry of Teichmüller curves in genus two, Int. Math. Res. Notices, 2016.
doi: 10.1093/imrn/rnw193.
|
[13]
|
R. Kenyon and J. Smillie, Billiards on rational-angled triangles, Comment. Math. Helv., 75 (2000), 65-108.
doi: 10.1007/s000140050113.
|
[14]
|
C. J. Leininger, On groups generated by two positive multi-twists: Teichmüller curves and Lehmer's number, Geom. Topol., 8 (2004), 1301-1359.
doi: 10.2140/gt.2004.8.1301.
|
[15]
|
C. McMullen, Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc., 16 (2003), 857-885.
doi: 10.1090/S0894-0347-03-00432-6.
|
[16]
|
______, Prym varieties and Teichmüller curves, Duke Math. J., 133 (2006), 569-590.
doi: 10.1215/S0012-7094-06-13335-5.
|
[17]
|
C. T. McMullen, R. E. Mukamel and A. Wright, Cubic curves and totally geodesic subvarieties of moduli space, preprint, 2016. Available from: http://math.harvard.edu/~ctm/papers/home/text/papers/gothic/gothic.pdf.
|
[18]
|
M. Möller, Periodic points on Veech surfaces and the Mordell-Weil group over a Teichmüller curve, Invent. Math., 165 (2006), 633-649.
doi: 10.1007/s00222-006-0510-3.
|
[19]
|
______, Variations of Hodge structures of a Teichmüller curve, J. Amer. Math. Soc., 19 (2006), 327-344.
doi: 10.1090/S0894-0347-05-00512-6.
|
[20]
|
______, Teichmüller curves, mainly from the viewpoint of algebraic geometry, in Moduli Spaces of Riemann Surfaces, IAS/Park City Math. Ser., 20, Amer. Math. Soc., Providence, RI, (2013), 267-318.
|
[21]
|
PARI Group, Bordeaux, PARI/GP version 2. 3. 5. Available from: http://pari.math.u-bordeaux.fr/.
|
[22]
|
W. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1989), 553-583.
doi: 10.1007/BF01388890.
|
[23]
|
Ya. B. Vorobets, Plane structures and billiards in rational polygons: The Veech alternative, Uspekhi Mat. Nauk, 51 (1996), 3-42.
doi: 10.1070/RM1996v051n05ABEH002993.
|
[24]
|
C. Ward, Calculation of Fuchsian groups associated to billiards in a rational triangle, Ergodic Theory Dynam. Systems, 18 (1998), 1019-1042.
doi: 10.1017/S0143385798117479.
|
[25]
|
A. Wright, Schwarz triangle mappings and Teichmüller curves: The Veech-Ward-Bouw-Möller curves, Geom. Funct. Anal., 23 (2013), 776-809.
doi: 10.1007/s00039-013-0221-z.
|
[26]
|
F. Yu and K. Zuo, Weierstrass filtration on Teichmüller curves and Lyapunov exponents, J. Mod. Dyn., 7 (2013), 209-237.
doi: 10.3934/jmd.2013.7.209.
|