We prove the existence and some properties of the limiting gap distribution for the directions of some Schottky group orbits in the Poincaré disk. A key feature is that the fundamental domains for these groups have infinite area.
Citation: |
Figure 3.
The plot for the gap distribution function
Figure 4.
The histograms of
[1] |
J. S. Athreya and J. Chaika, The distribution of gaps for saddle connection directions, Geom. Funct. Anal., 22 (2012), 1491-1516.
doi: 10.1007/s00039-012-0164-9.![]() ![]() ![]() |
[2] |
J. S. Athreya and Y. Cheung, A Poincaré section for the horocycle flow on the space of lattices, Int. Math. Res. Not. IMRN, 10 (2014), 2643-2690.
doi: 10.1093/imrn/rnt003.![]() ![]() ![]() |
[3] |
F. P. Boca, A. A. Popa and A. Zaharescu, Pair correlation of hyperbolic lattice angles, Int. J. Number Theory, 10 (2014), 1955-1989.
doi: 10.1142/S1793042114500651.![]() ![]() ![]() |
[4] |
J. Bourgain, A. Kontorovich and P. Sarnak, Sector estimates for hyperbolic isometries, Geom. Funct. Anal., 20 (2010), 1175-1200.
doi: 10.1007/s00039-010-0092-5.![]() ![]() ![]() |
[5] |
J. Bourgain, P. Sarnak and Z. Rudnick, Local statistics of lattice points on the sphere, arXiv: 1204.0134, 2012.
![]() |
[6] |
N. D. Elkies and C. T. McMullen, Gaps in ${\sqrt n}\bmod 1$ and ergodic theory, Duke Math. J., 123 (2004), 95-139.
doi: 10.1215/S0012-7094-04-12314-0.![]() ![]() ![]() |
[7] |
K. J. Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Mathematics, 85, Cambridge University Press, Cambridge, 1986.
![]() ![]() |
[8] |
A. Good, Local Analysis of Selberg’s Trace Formula, Lecture Notes in Mathematics, 1040, Springer-Verlag, Berlin, 1983.
doi: 10.1007/BFb0073074.![]() ![]() ![]() |
[9] |
D. Kelmer and A. Kontorovich, On the pair correlation density for hyperbolic angles, Duke Math. J., 164 (2015), 473-509.
doi: 10.1215/00127094-2861495.![]() ![]() ![]() |
[10] |
J. Marklof, The $n$-point correlations between values of a linear form, Ergodic Theory Dynam. Systems, 20 (2000), 1127-1172.
doi: 10.1017/S0143385700000626.![]() ![]() ![]() |
[11] |
J. Marklof and A. Str, The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems, Ann. of Math. (2), 172 (2010), 1949-2033.
doi: 10.4007/annals.2010.172.1949.![]() ![]() |
[12] |
J. Marklof and I. Vinogradov, Directions in Hyperbolic Lattices, arXiv: 1409.3764, 2015.
doi: 10.1515/crelle-2015-0070.![]() ![]() |
[13] |
C. T. McMullen, Hausdorff dimension and conformal dynamics. Ⅲ. Computation of dimension, Amer. J. Math., 120 (1998), 691-721.
doi: 10.1353/ajm.1998.0031.![]() ![]() ![]() |
[14] |
H. Oh and N. A. Shah, Equidistribution and counting for orbits of geometrically finite hyperbolic groups, J. Amer. Math. Soc., 26 (2013), 511-562.
doi: 10.1090/S0894-0347-2012-00749-8.![]() ![]() ![]() |
[15] |
S. J. Patterson, The limit set of a Fuchsian group, Acta Math., 136 (1976), 241-273.
doi: 10.1007/BF02392046.![]() ![]() ![]() |
[16] |
M. S. Risager and A. Södergren, Angles in hyperbolic lattices: The pair correlation density, Trans. Amer. Math. Soc., 369 (2017), 2807-2841.
doi: 10.1090/tran/6770.![]() ![]() ![]() |
[17] |
Z. Rudnick and X. Zhang, Gap distributions in circle packings, Münster J. Math., 10 (2017), 131-170.
![]() ![]() |
[18] |
D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 171-202.
![]() ![]() |
[19] |
D. Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math., 153 (1984), 259-277.
doi: 10.1007/BF02392379.![]() ![]() ![]() |