Jin Ma has made fundamental contributions to the theory of forward-backward stochastic differential equations (FBSDEs, for short). In this paper, as one of his main collaborators, I will recall the initiation, the path of the development for FBSDEs, as well as some interesting historic stories.
Citation: |
[1] |
F. Antonelli, Backward-forward stochastic differential equations, Ann. Appl. Probab., 3 (1993), 777-793.
![]() ![]() |
[2] |
F. Antonelli and J. Ma, Weak solutions of forward-backward SDE's, Stochastic Anal. Appl., 21 (2003), 493-514.
doi: 10.1081/SAP-120020423.![]() ![]() ![]() |
[3] |
R. Bellman, R. Kalaba and G. M. Wing, Invariant imbedding and the reduction of two-point boundary value problems to initial value problems, Proc. Nat. Acad. Sci. U.S.A., 46 (1960), 1646-1649.
doi: 10.1073/pnas.46.12.1646.![]() ![]() ![]() |
[4] |
A. Bensoussan, Leture on Stochastic Control, Lecture Notes in Math, 972 (1981), Springer-Verlag, Berlin.
![]() ![]() |
[5] |
J. M. Bismut, Analyse Convexe et Probabilités, Thése, Faculté des Sciences de Paris, Paris, 1973.
doi: 10.1016/0022-247X(73)90170-4.![]() ![]() ![]() |
[6] |
J. M. Bismut, An introductory approach to dualty in optimal stochastic control, SIAM Rev., 20 (1978), 62-78.
doi: 10.1137/1020004.![]() ![]() ![]() |
[7] |
J. Chen, J. Ma and H. Yin, Forward-backward SDEs with discontinuous coefficients, Stoch. Anal. Appl., 36 (2018), 274-294.
doi: 10.1080/07362994.2017.1399799.![]() ![]() ![]() |
[8] |
J. Cvitanić and J. Ma, Hedging options for a large investor and forward-backward SDE's, Ann. Appl. Probab., 6 (1996), 370-398.
doi: 10.1214/aoap/1034968136.![]() ![]() ![]() |
[9] |
J. Cvitanić and J. Ma, Reflected forward-backward SDEs and obstacle problems with boundary conditions, J. Appl. Math. Stochastic Anal., 14 (2001), 113-138.
doi: 10.1155/S1048953301000090.![]() ![]() ![]() |
[10] |
J. Cvtanic, D. Possamai and N. Touzi, Moral hazard in dynamic risk management, Management Sci., 63 (2017), 3328-3346.
![]() |
[11] |
F. Delarue, On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case, Stoch. Proc. Appl., 99 (2002), 209-286.
doi: 10.1016/S0304-4149(02)00085-6.![]() ![]() ![]() |
[12] |
J. Douglas, J. Ma and P. Protter, Numerical methods for forward-backward stochastic differential equations, Ann. Appl. Probab., 6 (1996), 940-968.
doi: 10.1214/aoap/1034968235.![]() ![]() ![]() |
[13] |
K. Du and S. Chen, Backward stochastic partial differential equations with quadratic growth, J. Math. Anal. Appl., 419 (2014), 447-468.
doi: 10.1016/j.jmaa.2014.04.050.![]() ![]() ![]() |
[14] |
K. Du, S. Tang and Q. Zhang, $W^{m, p}$-slution ($p\ge2$) of linear degenerate backward stochastic partial differential equations in the whole space, J. Diff. Eqn., 254 (2013), 2877-2904.
doi: 10.1016/j.jde.2013.01.013.![]() ![]() ![]() |
[15] |
D. Duffie and L. Epstein, Stochastic differential utility, Econometrica, 60 (1992), 353-394.
doi: 10.2307/2951600.![]() ![]() ![]() |
[16] |
K. Du and Q. Zhang, Semi-linear degenerate backward stochastic partial differential equations and associated forward-backward stochastic differential equations, Stoch. Proc. Appl., 123 (2013), 1616-1637.
doi: 10.1016/j.spa.2013.01.005.![]() ![]() ![]() |
[17] |
D. Duffie, J. Ma and J. Yong, Black's consol rate conjecture, Ann. Appl. Probab., 5 (1995), 356-382.
![]() ![]() |
[18] |
W. E, J. Han and A. Jentzen, Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations, Comm. Math. Stats., 5 (2017), 349-380.
doi: 10.1007/s40304-017-0117-6.![]() ![]() ![]() |
[19] |
N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance, 7 (1997), 1-71.
doi: 10.1111/1467-9965.00022.![]() ![]() ![]() |
[20] |
R. P. Feynman, Space-time approach to non-relativistic quantum mechanics, Rev. Modern Physics, 20 (1948), 367-387.
doi: 10.1103/revmodphys.20.367.![]() ![]() ![]() |
[21] |
Y. Hu and J. Ma, Nonlinear Feynman-Kac formula and discrete-functional-type BSDEs with continuous coefficients, Stochastic Process. Appl., 112 (2004), 23-51.
doi: 10.1016/j.spa.2004.02.002.![]() ![]() ![]() |
[22] |
Y. Hu and S. Peng, Solution of forward-backward stochastic differential equations, Probab. Theory & Rel. Fields, 103 (1995), 273-283.
doi: 10.1007/BF01204218.![]() ![]() ![]() |
[23] |
Y. Hu, J. Ma and J. Yong, On semilinear degenerate backward stochastic partial differential equations, Probab. Theory & Rel. Fields, 123 (2002), 381-411.
doi: 10.1007/s004400100193.![]() ![]() ![]() |
[24] |
M. Kac, On distributions of certain Wiener functionnals, Trans. AMS, 65 (1949), 1-13.
doi: 10.2307/1990512.![]() ![]() ![]() |
[25] |
J. Ma, On state estimation with infinite duration, Control Theory Appl., (in Chinese), 4 (1987), 114–120.
![]() ![]() |
[26] |
J. Ma, P. Protter, J. San Mart and S. Torres, Numerical method for backward stochastic differential equations, Ann. Appl. Probab., 12 (2002), 302-316.
doi: 10.1214/aoap/1015961165.![]() ![]() ![]() |
[27] |
J. Ma, P. Protter and J. Yong, Solving forward-backward stochastic differential equations explicitly — a four-step scheme, Probability Theory & Related Fields, 98 (1994), 339-359.
doi: 10.1007/BF01192258.![]() ![]() ![]() |
[28] |
J. Ma, J. Shen and Y. Zhao, On numerical approximations of forward-backward stochastic differential equations, SIAM J. Numer. Anal., 46 (2008), 2636-2661.
doi: 10.1137/06067393X.![]() ![]() ![]() |
[29] |
J. Ma and Y. Wang, On variant reflected backward SDEs, with applications, J. Appl. Math. Stoch. Anal., 2009, Art. ID 854768, 26 pp.
doi: 10.1155/2009/854768.![]() ![]() ![]() |
[30] |
J. Ma, Z. Wu, D. Zhang and J. Zhang, On well-posedness of forward-backward SDEs — a unified approach, Ann. Appl. Probab., 25 (2015), 2168-2214.
doi: 10.1214/14-AAP1046.![]() ![]() ![]() |
[31] |
J. Ma, H. Yin and J. Zhang, On non-Markovian forward-backward SDEs and backward stochastic PDEs, Stochastic Process. Appl., 122 (2012), 3980-4004.
doi: 10.1016/j.spa.2012.08.002.![]() ![]() ![]() |
[32] |
J. Ma and J. Yong, Solvability of forward-backward SDEs and the nodal set of Hamilton-Jacobi-Bellman equations, Chin. Ann. Math. Ser. B, 16 (1995), 279-298.
![]() ![]() |
[33] |
J. Ma and J. Yong, Adapted solution of a degenerate backward SPDE, with applications, Stoch. Proc. & Appl., 70 (1997), 59-84.
doi: 10.1016/S0304-4149(97)00057-4.![]() ![]() ![]() |
[34] |
J. Ma and J. Yong, On linear, degenerate backward stochastic partial differential equations, Prob. Theory & Rel. Fields, 113 (1999), 135-170.
doi: 10.1007/s004400050205.![]() ![]() ![]() |
[35] |
J. Ma and J. Yong, Forward-Backward Stochastic Differential Equations and Their Applications, Lecture Notes in Math., 1702 (1999), Springer-Verlag, Berlin.
![]() ![]() |
[36] |
J. Ma and J. Yong, Approximate solvability of forward-backward stochastic differential equations, Appl. Math. Optim., 45 (2002), 1-22.
doi: 10.1007/s00245-001-0025-7.![]() ![]() ![]() |
[37] |
J. Ma, J. Yong and Y. Zhao, Four step scheme for general Markovian forward-backward SDEs, J. System Science and Complexity, 23 (2010), 546-571.
doi: 10.1007/s11424-010-0145-8.![]() ![]() ![]() |
[38] |
J. Ma and J. Zhang, Representation theorems for backward stochastic differential equations, Ann. Appl. Probab., 12 (2002), 1390-1418.
doi: 10.1214/aoap/1037125868.![]() ![]() ![]() |
[39] |
J. Ma and J. Zhang, Path regularity for solutions of backward stochastic differential equations, Probab. Theory Related Fields, 122 (2002), 163-190.
doi: 10.1007/s004400100144.![]() ![]() ![]() |
[40] |
J. Ma and J. Zhang, Representations and regularities for solutions to BSDEs with reflections, Stochastic Process. Appl., 115 (2005), 539-569.
doi: 10.1016/j.spa.2004.05.010.![]() ![]() ![]() |
[41] |
J. Ma and J. Zhang, On weak solutions of forward-backward SDEs, Probab. Theory Related Fields, 151 (2011), 475-507.
doi: 10.1007/s00440-010-0305-8.![]() ![]() ![]() |
[42] |
J. Ma, J. Zhang and Z. Zheng, Weak solutions for forward-backward SDEs martingale problem approach, Ann. Probab., 36 (2008), 2092-2125.
doi: 10.1214/08-AOP0383.![]() ![]() ![]() |
[43] |
E. Pardoux and S. Peng, Adapted solution of backward stochastic differential equations, Syst. Control Lett., 14 (1990), 55-61.
doi: 10.1016/0167-6911(90)90082-6.![]() ![]() ![]() |
[44] |
S. Peng, A general stochastic maximum principle for optimal control problems, SIAM J. Control Optim., 28 (1990), 966-979.
doi: 10.1137/0328054.![]() ![]() ![]() |
[45] |
S. Peng, A nonlinear Feynman-Kac formula and applications, Control Theory, Stochastic Analysis and Applications (eds. S. Chen and J. Yong), World Scientific, (1991), 173–184.
![]() ![]() |
[46] |
Y. Sannikov, A continuous-time version of the Principal-Agent problem, Review Econ. Study, 75 (2008), 957-984.
doi: 10.1111/j.1467-937X.2008.00486.x.![]() ![]() ![]() |
[47] |
J. Yong, Finding adapted solutions of forward-backward stochastic differential equations — method of continuation, Prob. Theory & Rel. Fields, 107 (1997), 537-572.
doi: 10.1007/s004400050098.![]() ![]() ![]() |
[48] |
J. Zhang, A numerical scheme for backward stochasic differential equations, Ann. Appl. Probab., 14 (2004), 459-488.
doi: 10.1214/aoap/1075828058.![]() ![]() ![]() |