December  2021, 6(4): 267-300. doi: 10.3934/puqr.2021014

Conditional coherent risk measures and regime-switching conic pricing

1. 

UniSA Business, University of South Australia, SA 5000 Adelaide, Australia

2. 

Haskayne School of Business, University of Calgary, Calgary, Alberta, T2N 1N4, Canada

Robert J Elliott E-mail: relliott@ucalgary.ca

Received  December 13, 2020 Accepted  October 13, 2021 Published  November 2021

Fund Project: The authors would like to thank the Australian Research Council and NSERC for continuing support. The authors are also grateful to the referees for carefully reviewing the manuscript and providing valuable feedback.

This paper introduces and represents conditional coherent risk measures as essential suprema of conditional expectations over a convex set of probability measures and as distorted expectations given a concave distortion function. A model is then developed for the bid and ask prices of a European-type asset by a conic formulation. The price process is governed by a modified geometric Brownian motion whose drift and diffusion coefficients depend on a Markov chain. The bid and ask prices of a European-type asset are then characterized using conic quantization.

Citation: Engel John C Dela Vega, Robert J Elliott. Conditional coherent risk measures and regime-switching conic pricing. Probability, Uncertainty and Quantitative Risk, 2021, 6 (4) : 267-300. doi: 10.3934/puqr.2021014
References:
[1]

Artzner, P., Delbaen, F., Eber, J. M. and Heath, D., Coherent measures of risk, Mathematical Finance, 1999, 9(3): 203−228. doi: 10.1111/1467-9965.00068.

[2]

Artzner, P., Delbaen, F., Eber, J. M., Heath, D. and Ku, H., Coherent multiperiod risk adjusted values and Bellman’s principle, Annals of Operations Research, 2007, 152(1): 5−22. doi: 10.1007/s10479-006-0132-6.

[3]

Cheridito, P., Delbaen, F. and Kupper, M., Coherent and convex monetary risk measures for bounded càdlàg processes, Stochastic Processes and their Applications, 2004, 112(1): 1−22. doi: 10.1016/j.spa.2004.01.009.

[4]

Cheridito, P., Delbaen, F. and Kupper, M., Coherent and convex monetary risk measures for unbounded càdlàg processes, Finance and Stochastics, 2006, 10(3): 427−448. doi: 10.1007/s00780-004-0150-7.

[5]

Cheridito, P., Delbaen, F. and Kupper, M., Dynamic monetary risk measures for bounded discrete-time processes, Electronic Journal of Probability, 2006, 11(3): 57−106.

[6]

Cherny, A. and Madan, D. B., New measure for performance evaluation, The Review of Financial Studies, 2009, 22(7): 2571−2606. doi: 10.1093/rfs/hhn081.

[7]

Delbaen, F., Coherent risk measures on general probability spaces, In: Sandmann K, Schönbucher PJ (eds.), Advances in Finance and Stochastics, Springer, 2002.

[8]

Detlefsen, K. and Scandolo, G., Conditional and dynamic convex risk measures, Finance and Stochastics, 2005, 9(4): 539−561. doi: 10.1007/s00780-005-0159-6.

[9]

Dufour, F. and Elliott, R. J., Filtering with discrete state observations, Applied Mathematics and Optimization, 1999, 40(2): 259−272. doi: 10.1007/s002459900125.

[10]

Dunford, N. and Schwartz, J. T., Linear Operators Part I: General Theory, Interscience Publishers, New York, 1958.

[11]

Elliott, R. J., Aggoun, L. and Moore, J. B., Hidden Markov Models: Estimation and Control, 1st ed., Springer, 1995.

[12]

Elliott, R. J., Chan, L. and Siu, T. K., Option pricing and Esscher transform under regime switching, Annals of Finance, 2005, 1(14): 423−432.

[13]

Epstein, L. G. and Schneider, M., Recursive multiple-priors, Journal of Economic Theory, 2003, 113(1): 1−31.

[14]

Fiorin, L. and Schoutens, W., Conic quantization: Stochastic volatility and market implied liquidity, Quantitative Finance, 2020, 20(4): 531−542. doi: 10.1080/14697688.2019.1687928.

[15]

Föllmer, H. and Schied, A., Convex measures of risk and trading constraints, Finance and Stochastics, 2002, 6(4): 429−447. doi: 10.1007/s007800200072.

[16]

Föllmer, H. and Schied, A., Robust prefernces and convex measures of risk, In: Sandmann K, Schönbucher PJ (eds.) Advances in Finance and Stochastics, Springer, Berlin, Heidenberg, 2002.

[17]

Föllmer, H. and Schied, A., Stochastic Finance: An Introduction in Discrete Time, 4th ed., De Gruyter, 2016.

[18]

Graf, S. and Luschgy, H., Foundations of Quantization for Probability Distributions, Springer, New York, 2000.

[19]

Inoue, A., On the worst conditional expectation, Journal of Mathematical Analysis and Applications, 2003, 286(1): 237−247. doi: 10.1016/S0022-247X(03)00477-3.

[20]

Kopycka, D., Dynamic risk measures, robust representation and examples, Master’s thesis, The Netherlands: VU University Amsterdam and Poland: Jagiellonian University, 2009.

[21]

Kusuoka, S., On law invariant coherent risk measures, In: Kusuoka S., Maruyama T. (eds.), Advances in Mathematical Economics, Springer, 2001.

[22]

Madan, D. B. and Cherny, A., Markets as a counterparty: An introduction to conic finance, International Journal of Theoretical and Applied Finance, 2010, 13(8): 1149−1177. doi: 10.1142/S0219024910006157.

[23]

Madan, D. B. and Schoutens, W., Applied Conic Finance, 1st ed., Cambridge University Press, 2020.

[24]

Madan, D. B., Pistorius, M. and Stadje, M., On dynamic spectral risk measures, a limit theorem and optimal portfolio allocation, Finance and Stochastics, 2017, 21(4): 1073−1102. doi: 10.1007/s00780-017-0339-1.

show all references

References:
[1]

Artzner, P., Delbaen, F., Eber, J. M. and Heath, D., Coherent measures of risk, Mathematical Finance, 1999, 9(3): 203−228. doi: 10.1111/1467-9965.00068.

[2]

Artzner, P., Delbaen, F., Eber, J. M., Heath, D. and Ku, H., Coherent multiperiod risk adjusted values and Bellman’s principle, Annals of Operations Research, 2007, 152(1): 5−22. doi: 10.1007/s10479-006-0132-6.

[3]

Cheridito, P., Delbaen, F. and Kupper, M., Coherent and convex monetary risk measures for bounded càdlàg processes, Stochastic Processes and their Applications, 2004, 112(1): 1−22. doi: 10.1016/j.spa.2004.01.009.

[4]

Cheridito, P., Delbaen, F. and Kupper, M., Coherent and convex monetary risk measures for unbounded càdlàg processes, Finance and Stochastics, 2006, 10(3): 427−448. doi: 10.1007/s00780-004-0150-7.

[5]

Cheridito, P., Delbaen, F. and Kupper, M., Dynamic monetary risk measures for bounded discrete-time processes, Electronic Journal of Probability, 2006, 11(3): 57−106.

[6]

Cherny, A. and Madan, D. B., New measure for performance evaluation, The Review of Financial Studies, 2009, 22(7): 2571−2606. doi: 10.1093/rfs/hhn081.

[7]

Delbaen, F., Coherent risk measures on general probability spaces, In: Sandmann K, Schönbucher PJ (eds.), Advances in Finance and Stochastics, Springer, 2002.

[8]

Detlefsen, K. and Scandolo, G., Conditional and dynamic convex risk measures, Finance and Stochastics, 2005, 9(4): 539−561. doi: 10.1007/s00780-005-0159-6.

[9]

Dufour, F. and Elliott, R. J., Filtering with discrete state observations, Applied Mathematics and Optimization, 1999, 40(2): 259−272. doi: 10.1007/s002459900125.

[10]

Dunford, N. and Schwartz, J. T., Linear Operators Part I: General Theory, Interscience Publishers, New York, 1958.

[11]

Elliott, R. J., Aggoun, L. and Moore, J. B., Hidden Markov Models: Estimation and Control, 1st ed., Springer, 1995.

[12]

Elliott, R. J., Chan, L. and Siu, T. K., Option pricing and Esscher transform under regime switching, Annals of Finance, 2005, 1(14): 423−432.

[13]

Epstein, L. G. and Schneider, M., Recursive multiple-priors, Journal of Economic Theory, 2003, 113(1): 1−31.

[14]

Fiorin, L. and Schoutens, W., Conic quantization: Stochastic volatility and market implied liquidity, Quantitative Finance, 2020, 20(4): 531−542. doi: 10.1080/14697688.2019.1687928.

[15]

Föllmer, H. and Schied, A., Convex measures of risk and trading constraints, Finance and Stochastics, 2002, 6(4): 429−447. doi: 10.1007/s007800200072.

[16]

Föllmer, H. and Schied, A., Robust prefernces and convex measures of risk, In: Sandmann K, Schönbucher PJ (eds.) Advances in Finance and Stochastics, Springer, Berlin, Heidenberg, 2002.

[17]

Föllmer, H. and Schied, A., Stochastic Finance: An Introduction in Discrete Time, 4th ed., De Gruyter, 2016.

[18]

Graf, S. and Luschgy, H., Foundations of Quantization for Probability Distributions, Springer, New York, 2000.

[19]

Inoue, A., On the worst conditional expectation, Journal of Mathematical Analysis and Applications, 2003, 286(1): 237−247. doi: 10.1016/S0022-247X(03)00477-3.

[20]

Kopycka, D., Dynamic risk measures, robust representation and examples, Master’s thesis, The Netherlands: VU University Amsterdam and Poland: Jagiellonian University, 2009.

[21]

Kusuoka, S., On law invariant coherent risk measures, In: Kusuoka S., Maruyama T. (eds.), Advances in Mathematical Economics, Springer, 2001.

[22]

Madan, D. B. and Cherny, A., Markets as a counterparty: An introduction to conic finance, International Journal of Theoretical and Applied Finance, 2010, 13(8): 1149−1177. doi: 10.1142/S0219024910006157.

[23]

Madan, D. B. and Schoutens, W., Applied Conic Finance, 1st ed., Cambridge University Press, 2020.

[24]

Madan, D. B., Pistorius, M. and Stadje, M., On dynamic spectral risk measures, a limit theorem and optimal portfolio allocation, Finance and Stochastics, 2017, 21(4): 1073−1102. doi: 10.1007/s00780-017-0339-1.

[1]

Jiaqin Wei, Zhuo Jin, Hailiang Yang. Optimal dividend policy with liability constraint under a hidden Markov regime-switching model. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1965-1993. doi: 10.3934/jimo.2018132

[2]

Gurkan Ozturk, Mehmet Tahir Ciftci. Clustering based polyhedral conic functions algorithm in classification. Journal of Industrial and Management Optimization, 2015, 11 (3) : 921-932. doi: 10.3934/jimo.2015.11.921

[3]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2415-2433. doi: 10.3934/jimo.2021074

[4]

Tak Kuen Siu, Yang Shen. Risk-minimizing pricing and Esscher transform in a general non-Markovian regime-switching jump-diffusion model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2595-2626. doi: 10.3934/dcdsb.2017100

[5]

Müge Acar, Refail Kasimbeyli. A polyhedral conic functions based classification method for noisy data. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3493-3508. doi: 10.3934/jimo.2020129

[6]

Fuke Wu, George Yin, Zhuo Jin. Kolmogorov-type systems with regime-switching jump diffusion perturbations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2293-2319. doi: 10.3934/dcdsb.2016048

[7]

Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042

[8]

Mourad Bellassoued, Raymond Brummelhuis, Michel Cristofol, Éric Soccorsi. Stable reconstruction of the volatility in a regime-switching local-volatility model. Mathematical Control and Related Fields, 2020, 10 (1) : 189-215. doi: 10.3934/mcrf.2019036

[9]

Jiaqin Wei. Time-inconsistent optimal control problems with regime-switching. Mathematical Control and Related Fields, 2017, 7 (4) : 585-622. doi: 10.3934/mcrf.2017022

[10]

Zhuo Jin, Linyi Qian. Lookback option pricing for regime-switching jump diffusion models. Mathematical Control and Related Fields, 2015, 5 (2) : 237-258. doi: 10.3934/mcrf.2015.5.237

[11]

Wensheng Yin, Jinde Cao, Yong Ren. Inverse optimal control of regime-switching jump diffusions. Mathematical Control and Related Fields, 2022, 12 (3) : 567-579. doi: 10.3934/mcrf.2021034

[12]

Jun Li, Fubao Xi. Exponential ergodicity for regime-switching diffusion processes in total variation norm. Discrete and Continuous Dynamical Systems - B, 2022, 27 (10) : 6125-6146. doi: 10.3934/dcdsb.2021309

[13]

Leunglung Chan, Song-Ping Zhu. An exact and explicit formula for pricing lookback options with regime switching. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021203

[14]

Daniel Grieser. A natural differential operator on conic spaces. Conference Publications, 2011, 2011 (Special) : 568-577. doi: 10.3934/proc.2011.2011.568

[15]

Lin Xu, Rongming Wang, Dingjun Yao. Optimal stochastic investment games under Markov regime switching market. Journal of Industrial and Management Optimization, 2014, 10 (3) : 795-815. doi: 10.3934/jimo.2014.10.795

[16]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial and Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

[17]

Zhuo Jin, George Yin, Hailiang Yang. Numerical methods for dividend optimization using regime-switching jump-diffusion models. Mathematical Control and Related Fields, 2011, 1 (1) : 21-40. doi: 10.3934/mcrf.2011.1.21

[18]

Ping Chen, Haixiang Yao. Continuous-time mean-variance portfolio selection with no-shorting constraints and regime-switching. Journal of Industrial and Management Optimization, 2020, 16 (2) : 531-551. doi: 10.3934/jimo.2018166

[19]

Yinghui Dong, Kam Chuen Yuen, Guojing Wang. Pricing credit derivatives under a correlated regime-switching hazard processes model. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1395-1415. doi: 10.3934/jimo.2016079

[20]

Chao Xu, Yinghui Dong, Zhaolu Tian, Guojing Wang. Pricing dynamic fund protection under a Regime-switching Jump-diffusion model with stochastic protection level. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2603-2623. doi: 10.3934/jimo.2019072

 Impact Factor: 

Metrics

  • PDF downloads (248)
  • HTML views (287)
  • Cited by (0)

Other articles
by authors

[Back to Top]