-
Previous Article
CVaR-hedging and its applications to equity-linked life insurance contracts with transaction costs
- PUQR Home
- This Issue
-
Next Article
General time interval multidimensional BSDEs with generators satisfying a weak stochastic-monotonicity condition
Existence, uniqueness and strict comparison theorems for BSDEs driven by RCLL martingales
1. | School of Mathematics, Shandong University, Jinan 250100, Shandong, China |
2. | School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia |
3. | Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-661 Warszawa, Poland |
The existence, uniqueness, and strict comparison for solutions to a BSDE driven by a multi-dimensional RCLL martingale are developed. The goal is to develop a general multi-asset framework encompassing a wide spectrum of non-linear financial models with jumps, including as particular cases, the setups studied by Peng and Xu [
References:
[1] |
Barles, G., Buckdahn, R. and Pardoux, E., Backward stochastic differential equations and integral-partial differential equations, Stochastics and Stochastic Reports, 1997, 60(1–2): 57−83. |
[2] |
Bielecki, T. R., Cialenco, I. and Rutkowski, M., Arbitrage-free pricing of derivatives in nonlinear market models,Probability, Uncertainty and Quantitative Risk, 2018, 3: 2, doi: 10.1186/s41546-018-0027-x. |
[3] |
Bielecki, T. R., Jeanblanc, M. and Rutkowski, M., Credit Risk Modeling, Osaka University Press, Osaka, 2009. |
[4] |
Carbone, R., Ferrario, B. and Santacroce, M., Backward stochastic differential equations driven by càdlàg martingales, Theory of Probability & Its Applications, 2008, 52(2): 304−314. |
[5] |
Cohen, S. N. and Elliott, R. J., Stochastic Calculus and Applications, Springer, New York, 2015. |
[6] |
Dumitrescu, R., Grigorova, M., Quenez, M. C. and Sulem, A., BSDEs with Default Jump, In: Celledoni, E., Di Nunno, G., Ebrahimi-Fard, K. and Munthe-Kaas, H. (eds.), Computation and Combinatorics in Dynamics, Stochastics and Control, Abel Symposia, Springer, Cham, 2018. |
[7] |
Dumitrescu, R., Quenez, M. C. and Sulem, A., American options in an imperfect complete market with default, ESAIM: Proceedings and Surveys, 2018, 64: 93−110.
doi: 10.1051/proc/201864093. |
[8] |
El Karoui, N. and Huang, S., A general result of existence and uniqueness of backward stochastic differential equations. In: El Karoui, N. and Mazliak, L. (eds.), Backward Stochastic Differential Equations, Pitman Research Notes in Mathematics Series, Addison Wesley Longman Ltd., Harlow, Essex, 1997, 364: 27–36. |
[9] |
El Karoui, N., Matoussi, A. and Ngoupeyou, A., Quadratic exponential semimartingales and application to BSDEs with jumps, arXiv: 1603.06191, 2016. |
[10] |
El Karoui, N., Peng, S. and Quenez, M. C., Backward stochastic differential equations in finance, Mathematical Finance, 1997, 7(1): 1−71.
doi: 10.1111/1467-9965.00022. |
[11] |
He, S., Wang, J. and Yan, J., Semimartingale Theory and Stochastic Calculus, Science Press, Beijing, 1992. |
[12] |
Jacod, J. and Shiryaev, A. N., Limit Theorems for Stochastic Processes, 2nd ed., Springer, Berlin, 2003. |
[13] |
Jeanblanc, M. and Le Cam, Y., Immersion property and credit risk modelling, In: Delbaen, F., Rasonyi, M. and Stricker, C.(eds.), Optimality and Risk-Modern Trends in Mathematical Finance: The Kabanov Festschrift, Springer, Berlin, 2009. |
[14] |
Jeanblanc, M., Matoussi, A. and Ngoupeyou, A., Robust utility maximization problem in a discontinuous filtration, arXiv: 1201.2690v3, 2013. |
[15] |
Kim, E., Nie, T. and Rutkowski, M., American options in nonlinear markets, Electronic Journal of Probability, 2021, 26: 1−41. |
[16] |
Kim, E., Nie, T. and Rutkowski, M., Arbitrage-free pricing of game options in nonlinear markets, arXiv: 1807.05448v1, 2018. |
[17] |
Kusuoka, S., A remark on default risk models, Advances in Mathematical Economics, 1999, 1: 69−82. |
[18] |
Li, J., Fully coupled forward-backward stochastic differential equations with general martingale, Acta Mathematica Scientia, 2006, 26(3): 443−450.
doi: 10.1016/S0252-9602(06)60068-4. |
[19] |
Morlais, M., Quadratic BSDEs driven by a continuous martingale and applications to the utility maximization problem, Finance and Stochastics, 2009, 13(1): 121−150.
doi: 10.1007/s00780-008-0079-3. |
[20] |
Nie, T. and Rutkowski, M., BSDEs driven by multidimensional martingales and their applications to markets with funding costs, Theory of Probability & Its Applications, 2016, 60(4): 604−630. |
[21] |
Nie, T. and Rutkowski, M., Fair bilateral pricing under funding costs and exogenous collateralization, Mathematical Finance, 2018, 28(2): 621−655.
doi: 10.1111/mafi.12145. |
[22] |
Nie, T. and Rutkowski, M., Reflected BSDEs and doubly reflected BSDEs driven by RCLL martingales, Stochastics and Dynamics, 2021, https://doi.org/10.1142/S0219493722500125. |
[23] |
Papapantoleon, T., Possamaï, D. and Saplaouras, A., Existence and uniqueness results for BSDEs with jumps: the whole nine yards, Electronic Journal of Probability, 2018, 23: 1−68. |
[24] |
Peng, S. and Xu, X., BSDEs with random default time and their applications to default risk, arXiv: 0910.2091, 2009. |
[25] |
Peng, S. and Xu, X., BSDEs with random default time and related zero-sum stochastic differential games, Comptes Rendus Mathematique, 2010, 348(3–4): 193−198. |
[26] |
Protter, P. E., Stochastic Integration and Differential Equations, 2nd ed., Springer, Berlin, 2004. |
[27] |
Quenez, M. C. and Sulem, A., BSDEs with jumps, optimization and applications to dynamic risk measures, Stochastic Processes and their Applications, 2013, 123(8): 3328−3357.
doi: 10.1016/j.spa.2013.02.016. |
[28] |
Royer, M., Backward stochastic differential equations with jumps and related non-linear expectations, Stochastic Processes and their Applications, 2006, 116(10): 1358−1376.
doi: 10.1016/j.spa.2006.02.009. |
[29] |
Tang, S. and Li, X., Necessary conditions for optimal control of stochastic systems with random jumps, SIAM Journal on Control and Optimization, 1994, 32(5): 1447−1475.
doi: 10.1137/S0363012992233858. |
show all references
References:
[1] |
Barles, G., Buckdahn, R. and Pardoux, E., Backward stochastic differential equations and integral-partial differential equations, Stochastics and Stochastic Reports, 1997, 60(1–2): 57−83. |
[2] |
Bielecki, T. R., Cialenco, I. and Rutkowski, M., Arbitrage-free pricing of derivatives in nonlinear market models,Probability, Uncertainty and Quantitative Risk, 2018, 3: 2, doi: 10.1186/s41546-018-0027-x. |
[3] |
Bielecki, T. R., Jeanblanc, M. and Rutkowski, M., Credit Risk Modeling, Osaka University Press, Osaka, 2009. |
[4] |
Carbone, R., Ferrario, B. and Santacroce, M., Backward stochastic differential equations driven by càdlàg martingales, Theory of Probability & Its Applications, 2008, 52(2): 304−314. |
[5] |
Cohen, S. N. and Elliott, R. J., Stochastic Calculus and Applications, Springer, New York, 2015. |
[6] |
Dumitrescu, R., Grigorova, M., Quenez, M. C. and Sulem, A., BSDEs with Default Jump, In: Celledoni, E., Di Nunno, G., Ebrahimi-Fard, K. and Munthe-Kaas, H. (eds.), Computation and Combinatorics in Dynamics, Stochastics and Control, Abel Symposia, Springer, Cham, 2018. |
[7] |
Dumitrescu, R., Quenez, M. C. and Sulem, A., American options in an imperfect complete market with default, ESAIM: Proceedings and Surveys, 2018, 64: 93−110.
doi: 10.1051/proc/201864093. |
[8] |
El Karoui, N. and Huang, S., A general result of existence and uniqueness of backward stochastic differential equations. In: El Karoui, N. and Mazliak, L. (eds.), Backward Stochastic Differential Equations, Pitman Research Notes in Mathematics Series, Addison Wesley Longman Ltd., Harlow, Essex, 1997, 364: 27–36. |
[9] |
El Karoui, N., Matoussi, A. and Ngoupeyou, A., Quadratic exponential semimartingales and application to BSDEs with jumps, arXiv: 1603.06191, 2016. |
[10] |
El Karoui, N., Peng, S. and Quenez, M. C., Backward stochastic differential equations in finance, Mathematical Finance, 1997, 7(1): 1−71.
doi: 10.1111/1467-9965.00022. |
[11] |
He, S., Wang, J. and Yan, J., Semimartingale Theory and Stochastic Calculus, Science Press, Beijing, 1992. |
[12] |
Jacod, J. and Shiryaev, A. N., Limit Theorems for Stochastic Processes, 2nd ed., Springer, Berlin, 2003. |
[13] |
Jeanblanc, M. and Le Cam, Y., Immersion property and credit risk modelling, In: Delbaen, F., Rasonyi, M. and Stricker, C.(eds.), Optimality and Risk-Modern Trends in Mathematical Finance: The Kabanov Festschrift, Springer, Berlin, 2009. |
[14] |
Jeanblanc, M., Matoussi, A. and Ngoupeyou, A., Robust utility maximization problem in a discontinuous filtration, arXiv: 1201.2690v3, 2013. |
[15] |
Kim, E., Nie, T. and Rutkowski, M., American options in nonlinear markets, Electronic Journal of Probability, 2021, 26: 1−41. |
[16] |
Kim, E., Nie, T. and Rutkowski, M., Arbitrage-free pricing of game options in nonlinear markets, arXiv: 1807.05448v1, 2018. |
[17] |
Kusuoka, S., A remark on default risk models, Advances in Mathematical Economics, 1999, 1: 69−82. |
[18] |
Li, J., Fully coupled forward-backward stochastic differential equations with general martingale, Acta Mathematica Scientia, 2006, 26(3): 443−450.
doi: 10.1016/S0252-9602(06)60068-4. |
[19] |
Morlais, M., Quadratic BSDEs driven by a continuous martingale and applications to the utility maximization problem, Finance and Stochastics, 2009, 13(1): 121−150.
doi: 10.1007/s00780-008-0079-3. |
[20] |
Nie, T. and Rutkowski, M., BSDEs driven by multidimensional martingales and their applications to markets with funding costs, Theory of Probability & Its Applications, 2016, 60(4): 604−630. |
[21] |
Nie, T. and Rutkowski, M., Fair bilateral pricing under funding costs and exogenous collateralization, Mathematical Finance, 2018, 28(2): 621−655.
doi: 10.1111/mafi.12145. |
[22] |
Nie, T. and Rutkowski, M., Reflected BSDEs and doubly reflected BSDEs driven by RCLL martingales, Stochastics and Dynamics, 2021, https://doi.org/10.1142/S0219493722500125. |
[23] |
Papapantoleon, T., Possamaï, D. and Saplaouras, A., Existence and uniqueness results for BSDEs with jumps: the whole nine yards, Electronic Journal of Probability, 2018, 23: 1−68. |
[24] |
Peng, S. and Xu, X., BSDEs with random default time and their applications to default risk, arXiv: 0910.2091, 2009. |
[25] |
Peng, S. and Xu, X., BSDEs with random default time and related zero-sum stochastic differential games, Comptes Rendus Mathematique, 2010, 348(3–4): 193−198. |
[26] |
Protter, P. E., Stochastic Integration and Differential Equations, 2nd ed., Springer, Berlin, 2004. |
[27] |
Quenez, M. C. and Sulem, A., BSDEs with jumps, optimization and applications to dynamic risk measures, Stochastic Processes and their Applications, 2013, 123(8): 3328−3357.
doi: 10.1016/j.spa.2013.02.016. |
[28] |
Royer, M., Backward stochastic differential equations with jumps and related non-linear expectations, Stochastic Processes and their Applications, 2006, 116(10): 1358−1376.
doi: 10.1016/j.spa.2006.02.009. |
[29] |
Tang, S. and Li, X., Necessary conditions for optimal control of stochastic systems with random jumps, SIAM Journal on Control and Optimization, 1994, 32(5): 1447−1475.
doi: 10.1137/S0363012992233858. |
[1] |
Yufeng Shi, Qingfeng Zhu. A Kneser-type theorem for backward doubly stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1565-1579. doi: 10.3934/dcdsb.2010.14.1565 |
[2] |
Nathan Glatt-Holtz, Roger Temam, Chuntian Wang. Martingale and pathwise solutions to the stochastic Zakharov-Kuznetsov equation with multiplicative noise. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1047-1085. doi: 10.3934/dcdsb.2014.19.1047 |
[3] |
Dariusz Borkowski. Forward and backward filtering based on backward stochastic differential equations. Inverse Problems and Imaging, 2016, 10 (2) : 305-325. doi: 10.3934/ipi.2016002 |
[4] |
Jasmina Djordjević, Svetlana Janković. Reflected backward stochastic differential equations with perturbations. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1833-1848. doi: 10.3934/dcds.2018075 |
[5] |
Jan A. Van Casteren. On backward stochastic differential equations in infinite dimensions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 803-824. doi: 10.3934/dcdss.2013.6.803 |
[6] |
Joscha Diehl, Jianfeng Zhang. Backward stochastic differential equations with Young drift. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 5-. doi: 10.1186/s41546-017-0016-5 |
[7] |
Ying Hu, Shanjian Tang. Switching game of backward stochastic differential equations and associated system of obliquely reflected backward stochastic differential equations. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5447-5465. doi: 10.3934/dcds.2015.35.5447 |
[8] |
Xin Chen, Ana Bela Cruzeiro. Stochastic geodesics and forward-backward stochastic differential equations on Lie groups. Conference Publications, 2013, 2013 (special) : 115-121. doi: 10.3934/proc.2013.2013.115 |
[9] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[10] |
Qi Zhang, Huaizhong Zhao. Backward doubly stochastic differential equations with polynomial growth coefficients. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5285-5315. doi: 10.3934/dcds.2015.35.5285 |
[11] |
Yanqing Wang. A semidiscrete Galerkin scheme for backward stochastic parabolic differential equations. Mathematical Control and Related Fields, 2016, 6 (3) : 489-515. doi: 10.3934/mcrf.2016013 |
[12] |
Kai Du, Jianhui Huang, Zhen Wu. Linear quadratic mean-field-game of backward stochastic differential systems. Mathematical Control and Related Fields, 2018, 8 (3&4) : 653-678. doi: 10.3934/mcrf.2018028 |
[13] |
Weidong Zhao, Jinlei Wang, Shige Peng. Error estimates of the $\theta$-scheme for backward stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 905-924. doi: 10.3934/dcdsb.2009.12.905 |
[14] |
Weidong Zhao, Yang Li, Guannan Zhang. A generalized $\theta$-scheme for solving backward stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1585-1603. doi: 10.3934/dcdsb.2012.17.1585 |
[15] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control and Related Fields, 2021, 11 (4) : 797-828. doi: 10.3934/mcrf.2020047 |
[16] |
Jiongmin Yong. Forward-backward stochastic differential equations: Initiation, development and beyond. Numerical Algebra, Control and Optimization, 2022 doi: 10.3934/naco.2022011 |
[17] |
Yinggu Chen, Said HamadÈne, Tingshu Mu. Mean-field doubly reflected backward stochastic differential equations. Numerical Algebra, Control and Optimization, 2022 doi: 10.3934/naco.2022012 |
[18] |
Martin Hutzenthaler, Thomas Kruse, Tuan Anh Nguyen. On the speed of convergence of Picard iterations of backward stochastic differential equations. Probability, Uncertainty and Quantitative Risk, 2022, 7 (2) : 133-150. doi: 10.3934/puqr.2022009 |
[19] |
Min Niu, Bin Xie. Comparison theorem and correlation for stochastic heat equations driven by Lévy space-time white noises. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 2989-3009. doi: 10.3934/dcdsb.2018296 |
[20] |
Zhaoyang Qiu, Yixuan Wang. Martingale solution for stochastic active liquid crystal system. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2227-2268. doi: 10.3934/dcds.2020360 |
Impact Factor:
Tools
Article outline
[Back to Top]