Citation: |
[1] |
Chen, Z. and Hu, F., A law of the iterated logarithm under sublinear expectations, Journal of Financial Engineering, 2014, 1(2): 1450015. doi: 10.1142/S2345768614500159.![]() ![]() |
[2] |
Feller, W., The general form of the so-called law of the iterated logarithm, Transactions of the American Mathematical Society, 1943, 54(3): 373−402. doi: 10.1090/S0002-9947-1943-0009263-7.![]() ![]() |
[3] |
Hu, M., Li, X. and Li, X., Convergence rate of Peng’s law of large numbers under sublinear expectations, Probab. Uncertain. Quant. Risk, 2021, 6(3): 261−266. doi: 10.3934/puqr.2021013.![]() ![]() |
[4] |
Guo, X., Li, S. and Li, X., On the Hartman-Wintner law of the iterated logarithm under sublinear expectation, Communications in Statistics-Theory and Methods, 2022, https://doi.org/10.1080/03610926.2022.2026394.
![]() |
[5] |
Guo, X. and Li, X., On the laws of large numbers for pseudo-independent random variables under sublinear expectation, Statistic and Probability Letters, 2021, 172: 109042. doi: 10.1016/j.spl.2021.109042.![]() ![]() |
[6] |
Hartman, P. and Wintner, A., On the law of the iterated logarithm, American Journal of Mathematics, 1941, 63(1): 169−176. doi: 10.2307/2371287.![]() ![]() |
[7] |
Hu, M. and Li, X., Independence under the G -expectation framework, J. Theor. Probab., 2014, 27: 1011−1020. doi: 10.1007/s10959-012-0471-y.![]() ![]() |
[8] |
Kolmogorov, A., Über das Gesetz des iterierten Logarithmus, Mathematische Annalen, 1929, 101: 126–135.
![]() |
[9] |
Ledoux, M. and Talagrand, M., Probability in Banach Spaces: Isoperimetry and Processes, Springer Science & Business Media, 2013.
![]() |
[10] |
Li, S., Li, X. and Yuan, X., Upper and lower variances under model uncertainty and their applications in finance, International Journal of Financial Engineering, 2022, https://doi.org/10.1142/S2424786322500074.
![]() |
[11] |
Li, X. and Lin, Y., Generalized Wasserstein distance and weak convergence of sublinear expectations, J. Theor. Probab., 2017, 30: 581−593. doi: 10.1007/s10959-015-0651-7.![]() ![]() |
[12] |
Li, X., On the functional central limit theorem with mean-uncertainty, arXiv: 2203.00170, 2022.
![]() |
[13] |
Peng, S., Law of large numbers and central limit theorem under nonlinear expectations, Probab. Uncertain. Quant. Risk, 2019, 4: 4, doi: 10.1186/s41546-019-0038-2.
![]() |
[14] |
Peng, S., Nonlinear Expectations and Stochastic Calculus under Uncertainty, Springer, Berlin, Heidelberg, 2019.
![]() |
[15] |
Stout, W. F., A martingale analogue of Kolmogorov’s law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie verw Gebiete, 1970, 15: 279–290.
![]() |
[16] |
Stout, W. F., The Hartman-Wintner law of the iterated logarithm for martingales, The Annals of Mathematical Statistics, 1970, 41(6): 2158−2160. doi: 10.1214/aoms/1177696721.![]() ![]() |
[17] |
Stroock, D. W., Probability Theory: An Analytic View, Cambridge University Press, 1995.
![]() |
[18] |
Walley, P., Statistic Reasoning with Imprecise Probabilities, Chapman and Hall, 1993.
![]() |
[19] |
Zhang, L. X., Exponential inequalities under the sub-linear expectations with applications to laws of the iterated logarithm, Science China Mathematics, 2016, 59(12): 2503−2526. doi: 10.1007/s11425-016-0079-1.![]() ![]() |
[20] |
Zhang, L. X., On the laws of the iterated logarithm under sub-linear expectations, Probab. Uncertain. Quant. Risk, 2021, 6(4): 409−460. doi: 10.3934/puqr.2021020.![]() ![]() |