In this paper, the Harnack and shift Harnack inequalities for functional G-SDEs with degenerate noise are derived by the method of coupling by change of measure. Moreover, the gradient estimate for the associated nonlinear semigroup
Citation: |
[1] |
Aida, S., Uniform positivity improving property, Sobolev inequalities, and spectral gaps, J. Funct. Anal., 1998, 158(1): 152−185. doi: 10.1006/jfan.1998.3286.![]() ![]() |
[2] |
Aida, S. and Kawabi, H., Short time asymptotics of certain infinite dimensional diffusion process, In: Decreusefond, L., Øksendal, B. K. and Üstünel, A. S.(eds), Stochastic Analysis and Related Topics, VII, Progress in Probability, Springer, 2001, 48: 77−124.
![]() |
[3] |
Aida, S. and Zhang, T., On the small time asymptotics of diffusion processes on path groups, Potential Anal., 2002, 16: 67−78. doi: 10.1023/A:1024868720071.![]() ![]() |
[4] |
Bao, J., Wang, F.-Y. and Yuan, C., Derivative formula and Harnack inequality for degenerate functionals SDEs, Stoch. Dyn., 2013, 13(1): 943−951. ![]() |
[5] |
Bobkov, S., Gentil, I. and Ledoux, M., Hypercontractivity of Hamilton-Jacobi equations, J. Math. Pures Appl., 2001, 80(7): 669−696. doi: 10.1016/S0021-7824(01)01208-9.![]() ![]() |
[6] |
Denis, L., Hu, M. and Peng, S., Function spaces and capacity related to a sublinear expectation: application to G -Brownian motion paths, Potential Anal., 2011, 34(2): 139−161. doi: 10.1007/s11118-010-9185-x.![]() ![]() |
[7] |
Es-Sarhir, A., von Renesse, M.-K. and Scheutzow, M., Harnack inequality for functional SDEs with bounded memory, Electron. Commun. Probab., 2009, 14: 560−565. ![]() |
[8] |
Gao, F., Pathwise properties and homeomorphic flows for stochastic differential equations driven by G -Brownian motion, Stochastic Process. Appl., 2009, 119(10): 3356−3382. doi: 10.1016/j.spa.2009.05.010.![]() ![]() |
[9] |
Gong, F. and Wang, F.-Y., Heat kernel estimates with application to compactness of manifolds, Q. J. Math., 2001, 52: 171−180. doi: 10.1093/qjmath/52.2.171.![]() ![]() |
[10] |
Guillin, A. and Wang, F.-Y., Degenerate Fokker-Planck equations: Bismut formula, gradient estimate and Harnack inequality, J. Differ. Equ., 2012, 253(1): 20−40. doi: 10.1016/j.jde.2012.03.014.![]() ![]() |
[11] |
Hu, M. and Ji, S., Stochastic maximum principle for stochastic recursive optimal control problem under volatility ambiguity, SIAM J. Control Optim., 2016, 54(2): 918−945. doi: 10.1137/15M1037639.![]() ![]() |
[12] |
Hu, M., Ji, S., Peng, S. and Song, Y., Comparison theorem, Feynman–Kac formula and Girsanov transformation for BSDEs driven by G -Brownian motion, Stochastic Process. Appl., 2014, 124(2): 1170−1195. doi: 10.1016/j.spa.2013.10.009.![]() ![]() |
[13] |
Hu, M. and Peng, S., On representation theorem of G -expectations and paths of G -Brownian motion, Acta Math. Appl. Sin. Engl. Ser., 2009, 25(3): 539−546. doi: 10.1007/s10255-008-8831-1.![]() ![]() |
[14] |
Huang, X. and Yang, F.-F., Harnack inequality and gradient estimate for G -SDEs with degenerate noise, Sci. China Math., 2022, 65(4): 813−826. doi: 10.1007/s11425-020-1784-0.![]() ![]() |
[15] |
Kawabi, H., The parabolic Harnack inequality for the time dependent Ginzburg–Landau type SPDE and its application, Potential Anal., 2005, 22(1): 61−84. doi: 10.1007/s11118-004-6456-4.![]() ![]() |
[16] |
Osuka, E., Girsanov’s formula for G-Brownian motion, Stochastic Process. Appl., 2013, 123(4): 1301−1318. doi: 10.1016/j.spa.2012.12.009.![]() ![]() |
[17] |
Peng, S., G-Brownian motion and dynamic risk measures under volatility uncertainty, arXiv: 0711.2834, 2007.
![]() |
[18] |
Peng, S., G-expectation, G-Brownian motion and related stochastic calculus of Itô type, In: Benth, F. E., Di Nunno, G., Lindstrøm, T., Øksendal, B., and Zhang, T. (eds), Stoch. Anal. Appl., Springer, Berlin, Heidelberg, 2007, 2: 541–567.
![]() |
[19] |
Peng, S., Nonlinear expectations and stochastic calculus under uncertainty-with robust central limit theorem and G-Brownian motion, arXiv: 1002.4546, 2010.
![]() |
[20] |
Ren, Y., Bi, Q. and Sakthivel, R., Stochastic functional differential equations with infinite delay driven by G -Brownian motion, Math. Methods Appl. Sci., 2013, 36(13): 1746−1759. doi: 10.1002/mma.2720.![]() ![]() |
[21] |
Röckner, M. and Wang, F.-Y., Harnack and functional inequalities for generalized Mehler semigroups, J. Funct. Anal., 2003, 203(1): 237−261. doi: 10.1016/S0022-1236(03)00165-4.![]() ![]() |
[22] |
Röckner, M. and Wang, F.-Y., Supercontractivity and ultracontractivity for (nonsymmetric) diffusion semigroups on manifolds, Forum Math., 2003, 15(6): 893−921. ![]() |
[23] |
Song, Y., Gradient estimates for nonlinear diffusion semigroups by coupling methods, Sci. China Math., 2021, 64(5): 1093−1108. doi: 10.1007/s11425-018-9541-6.![]() ![]() |
[24] |
Wang, F.-Y., Functional inequalities, semigroup properties and spectrum estimates, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2000, 3(2): 263−295. doi: 10.1142/S0219025700000194.![]() ![]() |
[25] |
Wang, F.-Y., Harnack inequalities for log-Sobolev functions and estimates of log-Sobolev constants, Ann. Probab., 1999, 27(2): 653−663. ![]() |
[26] |
Wang, F. -Y., Harnack Inequalities for Stochastic Partial Differential Equations, Springer Briefs in Mathematics, Springer, New York, 2013.
![]() |
[27] |
Wang, F.-Y., Hypercontractivity and applications for stochastic Hamiltonian systems, J. Funct. Anal., 2017, 272(12): 5360−5383. doi: 10.1016/j.jfa.2017.03.015.![]() ![]() |
[28] |
Wang, F.-Y., Logarithmic Sobolev inequalities: conditions and counterexamples, J. Operator Theory, 2001, 46(1): 183−197. ![]() |
[29] |
Wang, F.-Y. and Yuan, C., Harnack inequalities for functional SDEs with multiplicative noise and applications, Stoch. Proc. Appl., 2011, 121(11): 2692−2710. doi: 10.1016/j.spa.2011.07.001.![]() ![]() |
[30] |
Wang, F.-Y., Logarithmic Sobolev inequalities on noncompact Riemannian manifolds, Probab. Theory Relat. Fields, 1997, 109(3): 417−424. doi: 10.1007/s004400050137.![]() ![]() |
[31] |
Wang, F.-Y. and Zhang, X. C., Derivative formula and applications for degenerate diffusion semigroups, J. Math. Pures Appl., 2013, 99(6): 726−740. doi: 10.1016/j.matpur.2012.10.007.![]() ![]() |
[32] |
Yang, F.-F., Harnack and log Harnack inequalities for G-SDEs with multiplicative noise, arXiv: 1907.02317, 2019.
![]() |
[33] |
Yang, F.-F., Harnack inequality and applications for SDEs driven by G -Brownian motion, Acta Math. Appl. Sin. Engl. Ser., 2020, 36(3): 627−635. doi: 10.1007/s10255-020-0957-9.![]() ![]() |